Hydroesterification of Used Cooking Oil with Subcritical Water and Supercritical Ethanol for Biodiesel Production

Authors

DOI:

https://doi.org/10.53591/easi.v2i2.2536

Keywords:

Hydroesterification, Hydrolysis, Esterification, Supercritical ethanol

Abstract

The objective of this study was to determine the best combination of experimental factors of temperature and reaction time for the two-step hydroesterification reaction (hydrolysis and esterification) of used cooking oil with subcritical water and supercritical ethanol to maximize the production of fatty acid ethyl esters (biodiesel). The used oil (raw material of the process) was characterized by means of physicochemical tests applicable to oils and fats of animal and vegetable origin. The hydrolysis reaction was carried out with a 3x3 factorial experimental design in temperature and time (250, 275 and 300 °C for 20, 40 and 60 minutes), with a constant volumetric ratio water - oil 1:1. Free fatty acids were separated from glycerin, esterified with supercritical ethanol based on a 3x3 factorial experimental design in temperature and time (250, 300 and 350 ° C for 10, 20 and 30 minutes) keeping constant the pressure of the reaction medium at 10 MPa and the molar ratio of ethanol - free fatty acids 10:1. The percent free fatty acid conversion of the hydrolysis reaction and the percent conversion of the esterification reaction were determined by potentiometric titration. 98 % hydrolysis conversion was obtained after 40 min reaction at 300 °C and 95 % esterification conversion was obtained after 20 min reaction at 300 °C.

Author Biographies

Walter Quiroga Pérez, Escuela Politécnica Nacional, Quito, Ecuador

Ingeniero Químico por la Escuela Politécnica Nacional (2019). Máster en gestión ambiental y energética por la Universidad Internacional de la Rioja y maestrante de economía circular en la Pontificia Universidad Católica del Ecuador. Se desempeña actualmente como coordinador técnico en PECS Ambiente y Sostenibilidad, especialista en la gestión de desechos peligrosos y economía circular.  

Liliana Guzmán Beckman, Escuela Politécnica Nacional, Quito, Ecuador

Ingeniera Química de la Escuela Politécnica Nacional (EPN) en el 2003. Máster en Diseño de Procesos, Universidad Central del Ecuador. Ingeniera de campo de registros eléctricos en pozos en perforación y en producción de petróleo, Baker Hughes. Gerente de Logística y Procesos para trazar el combustible ecuatoriano para prevenir y controlar el contrabando y desvío de derivados del petróleo, Decipher C.A. Actualmente, profesora del Departamento de Ingeniería Química de la EPN, investiga temas relacionados con petróleo, derivados del petróleo y biocombustibles.

Andrés Chico Proaño , Escuela Politécnica Nacional, Quito, Ecuador

Chemical Engineer from Escuela Politécnica Nacional. Master of Science in Process and Environmental Systems Engineering from the University of Surrey, UK and PhD in Chemical Engineering from University College of London, UK. His research areas are biomass thermochemical process modeling, waste-to-energy applications and chemical process design and optimization. Currently, he is a lecturer in the Department of Chemical Engineering at EPN.

Emerson Reyes Narváez, Escuela Politécnica Nacional, Quito, Ecuador

Emerson Reyes Narváez

Testing Laboratory Analyst

Escuela Politécnica Nacional

References

Akgün, N., Yaprakçi, A., & Candemir, C. (2010). Esterification of olive acid oil in supercritical methanol. European Journal of Lipid Science and Technology, 112(5), 593–599. https://doi.org/10.1002/ejlt.200900213.

Alenezi, R., Baig, M. N., Santos, R. C. D., & Leeke, G. A. (n.d.). Continuous Flow Hydrolysis of Sunflower Oil Using Sub-critical Water.

Alenezi, R., Leeke, G. A., Winterbottom, J. M., Santos, R. C. D., & Khan, A. R. (2010). Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production. Energy Conversion and Management, 51(5), 1055–1059. https://doi.org/10.1016/j.enconman.2009.12.009.

DIN. (2012). Rapeseed oil as fuel DIN 51605 : 2010-10. 51605.

dos Santos, P. R. S., Voll, F. A. P., Ramos, L. P., & Corazza, M. L. (2017). Esterification of fatty acids with supercritical ethanol in a continuous tubular reactor. Journal of Supercritical Fluids, 126, 25–36. https://doi.org/10.1016/j.supflu.2017.03.002.

Faúndez, J., & Valderrama, C. (2003). Modelado del Equilibrio Líquido-Vapor en Mezclas Binarias y Ternarias de Interés en Destilación Vínica. Información Tecnológica, 14(1), 83–92.

Ferreira de Mello, B. T., Gonçalves, J. E., de Menezes Rodrigues, G., Cardozo-Filho, L., & da Silva, C. (2017). Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Industrial Crops and Products, 97, 110–119. https://doi.org/10.1016/j.indcrop.2016.12.014.

Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61(10), 1638–1643. https://doi.org/10.1007/BF02541649.

Gui, M. M., Lee, K. T., & Bhatia, S. (2009). Supercritical ethanol technology for the production of biodiesel: Process optimization studies. Journal of Supercritical Fluids, 49(2), 286–292. https://doi.org/10.1016/j.supflu.2008.12.014.

Holliday, R. L., King, J. W., & List, G. R. (1997). Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 36(3), 932–935. https://doi.org/10.1021/ie960668f.

Kansedo, J., & Lee, K. T. (2014). Non-catalytic hydrolysis of sea mango (Cerbera odollam) oil and various non-edible oils to improve their solubility in alcohol for biodiesel production. Chemical Engineering Journal, 237, 1–7. https://doi.org/10.1016/j.cej.2013.09.104.

Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5), 693–698. https://doi.org/10.1016/S0016-2361(00)00140-X.

Kusdiana, D., & Saka, S. (2004). Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Applied Biochemistry and Biotechnology, 113–116, 781–791. https://doi.org/10.1385/ABAB:115:1-3:0781.

Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006.

M. Hajjari, M. Tabatabaei, M. Aghbashlo, H. G. (2017). 1 . A review on the prospects of sustainable biodiesel production : A global scenario with an emphasis on waste-oil biodiesel utilization 2 . Biochar as a Catalyst 3 . The political economy of biodiesel in an era of low oil prices toxicological and policy. Renewable and Sustainable Energy Reviews, 72(January 2017), 445–464. https://doi.org/10.1016/j.rser.2017.01.034.

Machado, G. D., Pessoa, F. L. P., Castier, M., Aranda, D. A. G., Cabral, V. F., Cardozo-Filho, L., Luiz, F., Pessoa, P., Castier, M., Aranda, D. A. G., & Cabral, V. F. (2013). Biodiesel Production by Esteri fi cation of Hydrolyzed Soybean Oil with Ethanol in Reactive Distillation Columns: Simulation Studies. Industrial & Engineering Chemistry Research, 52(27), 9461–9469. https://doi.org/10.1021/ie400806q.

Machrafi, H. (2012). Green Energy and Technology. In Green Energy and Technology. https://doi.org/10.2174/97816080528511120101.

Micic, R. D., Tomić, M. D., Kiss, F. E., Martinovic, F. L., Simikić, M., & Molnar, T. T. (2016). Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale. Energy Conversion and Management, 124, 377–388. https://doi.org/10.1016/j.enconman.2016.07.043

Milliren, A. L., Wissinger, J. C., Gottumukala, V., & Schall, C. A. (2013). Kinetics of soybean oil hydrolysis in subcritical water. Fuel, 108, 277–281. https://doi.org/10.1016/j.fuel.2012.12.068.

Minami, E., & Saka, S. (2006). Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85(17–18), 2479–2483. https://doi.org/10.1016/j.fuel.2006.04.017.

Ministerio del Ambiente. (2012). Suplemento-Registro Oficial N° 856.

Oliveira, E. De, Karen, L., Rodrigues, R., & Luiz, D. (2017). Experimental factorial design on hydroesteri fi cation of waste cooking oil by subcritical conditions for biodiesel production. 114, 574–580. https://doi.org/10.1016/j.renene.2017.07.066.

Ortiz-Martínez, V. M., Salar-García, M. J., Palacios-Nereo, F. J., Olivares-Carrillo, P., Quesada-Medina, J., Ríos, A. P. D. L., & Hernández-Fernández, F. J. (2016). In-depth study of the transesterification reaction of Pongamia pinnata oil for biodiesel production using catalyst-free supercritical methanol process. Journal of Supercritical Fluids, 113, 23–30. https://doi.org/10.1016/j.supflu.2016.03.009.

Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008.

Pinnarat, T., & Savage, P. E. (2010). Noncatalytic esterification of oleic acid in ethanol. Journal of Supercritical Fluids, 53(1–3), 53–59. https://doi.org/10.1016/j.supflu.2010.02.008.

Pinto, J. S. S., & Lanças, F. M. (2006). Hydrolysis of corn oil using subcritical water. Journal of the Brazilian Chemical Society, 17(1), 85–89. https://doi.org/10.1590/S0103-50532006000100013.

Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Applied Catalysis A: General, 391(1–2), 427–435. https://doi.org/10.1016/j.apcata.2010.03.047.

Shin, H. Y., Ryu, J. H., Park, S. Y., & Bae, S. Y. (2012). Thermal stability of fatty acids in subcritical water. Journal of Analytical and Applied Pyrolysis, 98, 250–253. https://doi.org/10.1016/j.jaap.2012.08.003.

Yujaroen, D., Goto, M., Sasaki, M., & Shotipruk, A. (2009). Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity. Fuel, 88(10), 2011–2016. https://doi.org/10.1016/j.fuel.2009.02.040.

Published

2023-12-23

How to Cite

Quiroga Pérez, W. ., Guzmán Beckman, L., Chico Proaño , A. ., & Reyes Narváez, E. (2023). Hydroesterification of Used Cooking Oil with Subcritical Water and Supercritical Ethanol for Biodiesel Production . EASI: Engineering and Applied Sciences in Industry, 2(2), 29–40. https://doi.org/10.53591/easi.v2i2.2536

Estadística (Statistics)