Hidroesterificación de Aceite Usado de Cocina con Agua Subcrítica y Etanol Supercrítico para la Producción de Biodiésel

Autores/as

DOI:

https://doi.org/10.53591/easi.v2i2.2536

Palabras clave:

Hidroesterificación, Hidrólisis, Esterificación, Etanol supercrítico, Biodiésel

Resumen

El objetivo de este estudio fue determinar la mejor combinación de factores experimentales de temperatura y tiempo de reacción para la reacción de hidroesterificación en dos pasos (hidrólisis y esterificación), del aceite usado de cocina con agua subcrítica y etanol supercrítico, que permita maximizar la obtención de ésteres etílicos de ácido graso (biodiésel). El aceite usado (materia prima del proceso) se caracterizó mediante ensayos fisicoquímicos aplicables para aceites y grasas de origen animal y vegetal.

La reacción de hidrólisis se llevó a cabo con un diseño experimental factorial 3x3 en temperatura y tiempo (250, 275 y 300 °C durante 20, 40 y 60 minutos), con relación volumétrica constante agua – aceite 1:1. Se separó los ácidos grasos libres de la glicerina, se esterificaron con etanol supercrítico con base en un diseño experimental factorial 3x3 en temperatura y tiempo (250, 300 y 350 ° C durante 10, 20 y 30 minutos) manteniéndose constante la presión del medio de reacción en 10 MPa y la relación molar de etanol - ácidos grasos libres 10:1. El porcentaje de conversión de ácidos grasos libres de la reacción de hidrólisis y el porcentaje de conversión de la reacción de esterificación se determinaron mediante titulación potenciométrica.

Biografía del autor/a

Walter Quiroga Pérez , Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador, 170525

Ingeniero Químico por la Escuela Politécnica Nacional (2019). Máster en
gestión ambiental y energética por la Universidad Internacional de la
Rioja y maestrante de economía circular en la Pontificia Universidad
Católica del Ecuador. Se desempeña actualmente como coordinador
técnico en PECS Ambiente y Sostenibilidad, especialista en la gestión de
desechos peligrosos y economía circular.

Liliana Guzmán Beckmann, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador, 170525

Ingeniera Química de la Escuela Politécnica Nacional (EPN) en el 2003.
Máster en Diseño de Procesos, Universidad Central del Ecuador.
Ingeniera de campo de registros eléctricos en pozos en perforación y en
producción de petróleo, Baker Hughes. Gerente de Logística y Procesos
para trazar el combustible ecuatoriano para prevenir y controlar el
contrabando y desvío de derivados del petróleo, Decipher C.A.
Actualmente, profesora del Departamento de Ingeniería Química de la
EPN, investiga temas relacionados con petróleo, derivados del petróleo
y biocombustibles.

Andrés Chico Proaño, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador, 170525

Ingeniero Químico por la Escuela Politécnica Nacional. Máster en
ciencias en Ingeniería de Procesos y Sistemas Ambientales por
University of Surrey, GB y Doctor en Ingeniería Química por University
College of London, GB. Sus áreas de investigación es el modelado de
procesos termoquímicos de biomasa, las aplicaciones de conversión de
residuos en energía y el diseño y optimización de procesos químicos.
Actualmente, se desempeña como docente del Departamento de
Ingeniería Química de la EPN.

Emerson Reyes-Narváez, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador, 170525

Ingeniero Químico de la Escuela Politécnica Nacional en 2020. Magister
en Diseño Industrial y de Procesos en la Universidad Internacional SEK
(UISEK) en 2022. Sus áreas de conocimiento: sistemas de gestión de la
calidad, la mejora continua de procesos y el diseño de proyectos de
ingeniería para inversión. Actualmente, se desempeña como analista de
laboratorio de ensayos en el Laboratorio de Combustibles,
Biocombustibles y Aceites Lubricantes (LACBAL), vinculado a los
proyectos de investigación y de transferencia de tecnología.

Citas

Akgün, N., Yaprakçi, A., & Candemir, C. (2010). Esterification of olive acid oil in supercritical methanol. European Journal of Lipid Science and Technology, 112(5), 593–599. https://doi.org/10.1002/ejlt.200900213

Alenezi, R., Baig, M. N., Santos, R. C. D., & Leeke, G. A. (n.d.). Continuous Flow Hydrolysis of Sunflower Oil Using Sub-critical Water.

Alenezi, R., Leeke, G. A., Winterbottom, J. M., Santos, R. C. D., & Khan, A. R. (2010). Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production. Energy Conversion and Management, 51(5), 1055–1059. https://doi.org/10.1016/j.enconman.2009.12.009

DIN. (2012). Rapeseed oil as fuel DIN 51605 : 2010-10. 51605.

dos Santos, P. R. S., Voll, F. A. P., Ramos, L. P., & Corazza, M. L. (2017). Esterification of fatty acids with supercritical ethanol in a continuous tubular reactor. Journal of Supercritical Fluids, 126, 25–36. https://doi.org/10.1016/j.supflu.2017.03.002

Faúndez, J., & Valderrama, C. (2003). Modelado del Equilibrio Líquido-Vapor en Mezclas Binarias y Ternarias de Interés en Destilación Vínica. Información Tecnológica, 14(1), 83–92.

Ferreira de Mello, B. T., Gonçalves, J. E., de Menezes Rodrigues, G., Cardozo-Filho, L., & da Silva, C. (2017). Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Industrial Crops and Products, 97, 110–119. https://doi.org/10.1016/j.indcrop.2016.12.014

Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61(10), 1638–1643. https://doi.org/10.1007/BF02541649

Gui, M. M., Lee, K. T., & Bhatia, S. (2009). Supercritical ethanol technology for the production of biodiesel: Process optimization studies. Journal of Supercritical Fluids, 49(2), 286–292. https://doi.org/10.1016/j.supflu.2008.12.014

Holliday, R. L., King, J. W., & List, G. R. (1997). Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 36(3), 932–935. https://doi.org/10.1021/ie960668f

Kansedo, J., & Lee, K. T. (2014). Non-catalytic hydrolysis of sea mango (Cerbera odollam) oil and various non-edible oils to improve their solubility in alcohol for biodiesel production. Chemical Engineering Journal, 237, 1–7. https://doi.org/10.1016/j.cej.2013.09.104

Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5), 693–698. https://doi.org/10.1016/S0016-2361(00)00140-X

Kusdiana, D., & Saka, S. (2004). Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Applied Biochemistry and Biotechnology, 113–116, 781–791. https://doi.org/10.1385/ABAB:115:1-3:0781

Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006

M. Hajjari, M. Tabatabaei, M. Aghbashlo, H. G. (2017). 1 . A review on the prospects of sustainable biodiesel production : A global scenario with an emphasis on waste-oil biodiesel utilization 2 . Biochar as a Catalyst 3 . The political economy of biodiesel in an era of low oil prices toxicological and policy. Renewable and Sustainable Energy Reviews, 72(January 2017), 445–464.

Machado, G. D., Pessoa, F. L. P., Castier, M., Aranda, D. A. G., Cabral, V. F., Cardozo-Filho, L., Luiz, F., Pessoa, P., Castier, M., Aranda, D. A. G., & Cabral, V. F. (2013). Biodiesel Production by Esteri fi cation of Hydrolyzed Soybean Oil with Ethanol in Reactive Distillation Columns: Simulation Studies. Industrial & Engineering Chemistry Research, 52(27), 9461–9469. https://doi.org/10.1021/ie400806q

Machrafi, H. (2012). Green Energy and Technology. In Green Energy and Technology. https://doi.org/10.2174/97816080528511120101

Micic, R. D., Tomić, M. D., Kiss, F. E., Martinovic, F. L., Simikić, M., & Molnar, T. T. (2016). Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale. Energy Conversion and Management, 124, 377–388. https://doi.org/10.1016/j.enconman.2016.07.043

Milliren, A. L., Wissinger, J. C., Gottumukala, V., & Schall, C. A. (2013). Kinetics of soybean oil hydrolysis in subcritical water. Fuel, 108, 277–281. https://doi.org/10.1016/j.fuel.2012.12.068

Minami, E., & Saka, S. (2006). Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85(17–18), 2479–2483. https://doi.org/10.1016/j.fuel.2006.04.017

Ministerio del Ambiente. (2012). Suplemento-Registro Oficial N° 856.

Oliveira, E. De, Karen, L., Rodrigues, R., & Luiz, D. (2017). Experimental factorial design on hydroesteri fi cation of waste cooking oil by subcritical conditions for biodiesel production. 114, 574–580. https://doi.org/10.1016/j.renene.2017.07.066

Ortiz-Martínez, V. M., Salar-García, M. J., Palacios-Nereo, F. J., Olivares-Carrillo, P., Quesada-Medina, J., Ríos, A. P. D. L., & Hernández-Fernández, F. J. (2016). In-depth study of the transesterification reaction of Pongamia pinnata oil for biodiesel production using catalyst-free supercritical methanol process. Journal of Supercritical Fluids, 113, 23–30. https://doi.org/10.1016/j.supflu.2016.03.009

Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008

Pinnarat, T., & Savage, P. E. (2010). Noncatalytic esterification of oleic acid in ethanol. Journal of Supercritical Fluids, 53(1–3), 53–59. https://doi.org/10.1016/j.supflu.2010.02.008

Pinto, J. S. S., & Lanças, F. M. (2006). Hydrolysis of corn oil using subcritical water. Journal of the Brazilian Chemical Society, 17(1), 85–89. https://doi.org/10.1590/S0103-50532006000100013

Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Applied Catalysis A: General, 391(1–2), 427–435. https://doi.org/10.1016/j.apcata.2010.03.047

Shin, H. Y., Ryu, J. H., Park, S. Y., & Bae, S. Y. (2012). Thermal stability of fatty acids in subcritical water. Journal of Analytical and Applied Pyrolysis, 98, 250–253. https://doi.org/10.1016/j.jaap.2012.08.003

Yujaroen, D., Goto, M., Sasaki, M., & Shotipruk, A. (2009). Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity. Fuel, 88(10), 2011–2016. https://doi.org/10.1016/j.fuel.2009.02.040

Descargas

Publicado

26-12-2023

Cómo citar

Quiroga Pérez , W., Guzmán Beckmann, L., Chico Proaño, A., & Reyes-Narváez, E. (2023). Hidroesterificación de Aceite Usado de Cocina con Agua Subcrítica y Etanol Supercrítico para la Producción de Biodiésel . EASI: Ingeniería Y Ciencias Aplicadas En La Industria, 2(2), 29–40. https://doi.org/10.53591/easi.v2i2.2536