Hidroesterificación de Aceite Usado de Cocina con Agua Subcrítica y Etanol Supercrítico para la Producción de Biodiésel
DOI:
https://doi.org/10.53591/easi.v2i2.2536Keywords:
Hydroesterification, Hydrolysis, Esterification, Supercritical ethanol, BiodieselAbstract
The objective of this study was to determine the best combination of experimental factors of temperature and reaction time for the two-step
hydroesterification reaction (hydrolysis and esterification) of used cooking oil with subcritical water and supercritical ethanol, which allows maximizing the obtaining of ethyl fatty acid esters (biodiesel). The used oil (raw material of the process) was characterized by physicochemical tests applicable to oils and fats of animal and vegetable origin. The hydrolysis reaction was carried out with a 3x3 factorial experimental design in temperature and time (250, 275 and 300 °C for 20, 40 and 60 minutes), with a constant 1:1 water-oil volumetric ratio. The free fatty acids were separated from glycerin, they were esterified with supercritical ethanol based on a 3x3 factorial experimental design in temperature and time (250, 300 and 350 ° C for 10, 20 and 30 minutes) keeping the pressure of the medium constant. reaction at 10 MPa and the molar ratio of ethanol - free fatty acids 10:1. The percentage conversion of free fatty acids from the hydrolysis reaction and the percentage conversion from the esterification reaction were determined by potentiometric titration.
References
Akgün, N., Yaprakçi, A., & Candemir, C. (2010). Esterification of olive acid oil in supercritical methanol. European Journal of Lipid Science and Technology, 112(5), 593–599. https://doi.org/10.1002/ejlt.200900213
Alenezi, R., Baig, M. N., Santos, R. C. D., & Leeke, G. A. (n.d.). Continuous Flow Hydrolysis of Sunflower Oil Using Sub-critical Water.
Alenezi, R., Leeke, G. A., Winterbottom, J. M., Santos, R. C. D., & Khan, A. R. (2010). Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production. Energy Conversion and Management, 51(5), 1055–1059. https://doi.org/10.1016/j.enconman.2009.12.009
DIN. (2012). Rapeseed oil as fuel DIN 51605 : 2010-10. 51605.
dos Santos, P. R. S., Voll, F. A. P., Ramos, L. P., & Corazza, M. L. (2017). Esterification of fatty acids with supercritical ethanol in a continuous tubular reactor. Journal of Supercritical Fluids, 126, 25–36. https://doi.org/10.1016/j.supflu.2017.03.002
Faúndez, J., & Valderrama, C. (2003). Modelado del Equilibrio Líquido-Vapor en Mezclas Binarias y Ternarias de Interés en Destilación Vínica. Información Tecnológica, 14(1), 83–92.
Ferreira de Mello, B. T., Gonçalves, J. E., de Menezes Rodrigues, G., Cardozo-Filho, L., & da Silva, C. (2017). Hydroesterification of crambe oil (Crambe abyssinica H.) under pressurized conditions. Industrial Crops and Products, 97, 110–119. https://doi.org/10.1016/j.indcrop.2016.12.014
Freedman, B., Pryde, E. H., & Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society, 61(10), 1638–1643. https://doi.org/10.1007/BF02541649
Gui, M. M., Lee, K. T., & Bhatia, S. (2009). Supercritical ethanol technology for the production of biodiesel: Process optimization studies. Journal of Supercritical Fluids, 49(2), 286–292. https://doi.org/10.1016/j.supflu.2008.12.014
Holliday, R. L., King, J. W., & List, G. R. (1997). Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 36(3), 932–935. https://doi.org/10.1021/ie960668f
Kansedo, J., & Lee, K. T. (2014). Non-catalytic hydrolysis of sea mango (Cerbera odollam) oil and various non-edible oils to improve their solubility in alcohol for biodiesel production. Chemical Engineering Journal, 237, 1–7. https://doi.org/10.1016/j.cej.2013.09.104
Kusdiana, D., & Saka, S. (2001). Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5), 693–698. https://doi.org/10.1016/S0016-2361(00)00140-X
Kusdiana, D., & Saka, S. (2004). Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Applied Biochemistry and Biotechnology, 113–116, 781–791. https://doi.org/10.1385/ABAB:115:1-3:0781
Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006
M. Hajjari, M. Tabatabaei, M. Aghbashlo, H. G. (2017). 1 . A review on the prospects of sustainable biodiesel production : A global scenario with an emphasis on waste-oil biodiesel utilization 2 . Biochar as a Catalyst 3 . The political economy of biodiesel in an era of low oil prices toxicological and policy. Renewable and Sustainable Energy Reviews, 72(January 2017), 445–464.
Machado, G. D., Pessoa, F. L. P., Castier, M., Aranda, D. A. G., Cabral, V. F., Cardozo-Filho, L., Luiz, F., Pessoa, P., Castier, M., Aranda, D. A. G., & Cabral, V. F. (2013). Biodiesel Production by Esteri fi cation of Hydrolyzed Soybean Oil with Ethanol in Reactive Distillation Columns: Simulation Studies. Industrial & Engineering Chemistry Research, 52(27), 9461–9469. https://doi.org/10.1021/ie400806q
Machrafi, H. (2012). Green Energy and Technology. In Green Energy and Technology. https://doi.org/10.2174/97816080528511120101
Micic, R. D., Tomić, M. D., Kiss, F. E., Martinovic, F. L., Simikić, M., & Molnar, T. T. (2016). Comparative analysis of single-step and two-step biodiesel production using supercritical methanol on laboratory-scale. Energy Conversion and Management, 124, 377–388. https://doi.org/10.1016/j.enconman.2016.07.043
Milliren, A. L., Wissinger, J. C., Gottumukala, V., & Schall, C. A. (2013). Kinetics of soybean oil hydrolysis in subcritical water. Fuel, 108, 277–281. https://doi.org/10.1016/j.fuel.2012.12.068
Minami, E., & Saka, S. (2006). Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel, 85(17–18), 2479–2483. https://doi.org/10.1016/j.fuel.2006.04.017
Ministerio del Ambiente. (2012). Suplemento-Registro Oficial N° 856.
Oliveira, E. De, Karen, L., Rodrigues, R., & Luiz, D. (2017). Experimental factorial design on hydroesteri fi cation of waste cooking oil by subcritical conditions for biodiesel production. 114, 574–580. https://doi.org/10.1016/j.renene.2017.07.066
Ortiz-Martínez, V. M., Salar-García, M. J., Palacios-Nereo, F. J., Olivares-Carrillo, P., Quesada-Medina, J., Ríos, A. P. D. L., & Hernández-Fernández, F. J. (2016). In-depth study of the transesterification reaction of Pongamia pinnata oil for biodiesel production using catalyst-free supercritical methanol process. Journal of Supercritical Fluids, 113, 23–30. https://doi.org/10.1016/j.supflu.2016.03.009
Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496. https://doi.org/10.1016/j.fuel.2008.07.008
Pinnarat, T., & Savage, P. E. (2010). Noncatalytic esterification of oleic acid in ethanol. Journal of Supercritical Fluids, 53(1–3), 53–59. https://doi.org/10.1016/j.supflu.2010.02.008
Pinto, J. S. S., & Lanças, F. M. (2006). Hydrolysis of corn oil using subcritical water. Journal of the Brazilian Chemical Society, 17(1), 85–89. https://doi.org/10.1590/S0103-50532006000100013
Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Hydrolysis of vegetable oils and fats to fatty acids over solid acid catalysts. Applied Catalysis A: General, 391(1–2), 427–435. https://doi.org/10.1016/j.apcata.2010.03.047
Shin, H. Y., Ryu, J. H., Park, S. Y., & Bae, S. Y. (2012). Thermal stability of fatty acids in subcritical water. Journal of Analytical and Applied Pyrolysis, 98, 250–253. https://doi.org/10.1016/j.jaap.2012.08.003
Yujaroen, D., Goto, M., Sasaki, M., & Shotipruk, A. (2009). Esterification of palm fatty acid distillate (PFAD) in supercritical methanol: Effect of hydrolysis on reaction reactivity. Fuel, 88(10), 2011–2016. https://doi.org/10.1016/j.fuel.2009.02.040
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Walter Quiroga Pérez , Liliana Guzmán Beckmann, Andrés Chico Proaño, Emerson Reyes-Narváez
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Contributions published in the EASI journal follow the open access license CC BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivs 4.0). This license empowers you as an author and ensures wide dissemination of your research while still protecting your rights.
For authors:
- Authors retain copyrights without restrictions according to CC BY-NC-ND 4.0 license.
- The journal obtains a license to publish the first original manuscript.
For readers/users:
Free access and distribution: Anyone can access, download, copy, print, and share the published article freely according to the license CC BY-NC-ND 4.0 terms.
Attribution required: If any third party use the published material, they must give credit to the creator by providing the name, article title, and journal name, ensuring the intellectual property of the author(s), and helping to build the scholarly reputation.
Non-commercial use: only noncommercial use of the published work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation by any third party.
No modifications allowed: The content of the published article cannot be changed, remixed, or rebuilt upon the author’s work. This ensures the integrity and accuracy of the research findings.