Comparación del rendimiento de los procesos de pirolisis del PET, LDPE y PS, en un reactor prototipo de proceso discontinuo

Autores/as

DOI:

https://doi.org/10.53591/easi.v3i2.1866

Palabras clave:

Pirólisis de plásticos, Hidrocarburos Líquidos, Reactor, Plástico, Factores Cr´ticos

Resumen

This document-template provides detailed instructions for preparing and submitting a paper Abstract. In this study, the critical factors of the pyrolysis process of plastics to obtain liquid hydrocarbons derived from petroleum were determined. The evaluation of these factors consisted of tests at specific temperatures of 350, 395 and 400°C using different types of plastics, such as polyethylene terephthalate (PET), polystyrene (PS) and low-density polyethylene (LDPE). The tests were carried out in a batch reactor with an average reaction time of 10 minutes. It was found that PS, processed at 395°C for 8 minutes, produced the highest number of liquid hydrocarbons, with an average yield of 91% by weight compared to the liquid products. In contrast, PET generated less than 30% of the product, while LDPE achieved a yield of 84%. The determining factors were the average temperature, the thermal insulation of the reactor and the selection of the type of plastic. Other factors, such as pressure and reaction rate, also proved to have a relevant impact on the process results.

Biografía del autor/a

Jorge Torres, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil

Ingeniero Industrial (2024, Universidad de Guayaquil, Ecuador)

Milton Vinces, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil

Ingeniero Industrial (2024, Universidad de Guayaquil, Ecuador)

Pedro Castro, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil

Doutor em Planejamento de Sistemas Energéticos (2023, Universidade Estadual de Campinas, SP, Brasil).  Mestre em Planejamento de Sistemas Energétcios (2017, Universidade Estadual de Campinas, SP, Brasil). Especialista en planificación energética. Docente investigador en la Facultad de Ingeniería Industrial, Universidad de Guayaquil, Ecuador.

Jaime Arias, Facultad de Ingeniería Eléctrica y Computación, Universidad Estadual de Campinas, Brasil

Ingeniero Electrónico en Computación, Escuela Superior Politécnica del Chimborazo, Ecuador. Cursando Doctorado en UNICAMP, Brasil. MSc. en Docencia Universitaria e Investigación Educativa, Universidad Técnica de Machala, Ecuador. MSc. en Gestión de Redes y Telecomunicaciones, Escuela Superior Politécnica del Ejército, Ecuador. Contribuciones de investigación que subrayan los avances en seguridad de redes y telecomunicaciones.

Citas

Abbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2013). Evaluation of pyrolysis product of virgin high-density polyethylene degradation using different process parameters in a stirred reactor. Fuel Processing Technology, 109, 90-95. https://doi.org/10.1016/j.fuproc.2012.10.018

Aguilar Carlos (2019). Repositorio institucional: Universidad de los Andes, Colombia. Obtenido de https://repositorio.uniandes.edu.co/server/api/core/bitstreams/e25211a1-f669-499d-b1ee-c385dae9d6c5/content

Borrelle, S. B., Ringma, J., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515-1518. https://doi.org/10.1126/science.aba3656

Castro-Verdezoto, P-, Vidoza J., Galo, W. (2019). Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector. Energy Policy, 134, 110948. https://doi.org/10.1016/j.enpol.2019.110948

Castro, P., Da Cunha, M., García, A., Quintero, W. (2024). Energy policy implications of Ecuador’s NDC. Journal of Infrastructure, Policy and Development 2024, 8(13), 7542. https://doi.org/10.24294/jipd7542

Cruz, J. F., & Pulgarin, A. C. (2019, diciembre 15). Impacto del reciclaje en la biodiversidad. ANZOO. http://anzoo.org/publicaciones/index.php/anzoo/issue/view/11/RCZ%20Vol%20 5%20%2310

Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., & Ruan, R. (2019). Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 196, 130-137. https://doi.org/10.1016/j.enconman.2019.06.076

Elordi, G., Olazar, M., Castaño, P., Artetxe, M., & Bilbao, J. (2012). Polyethylene cracking on a spent FCC catalyst in a conical spouted bed. Industrial & Engineering Chemistry Research, 51(40), 12816-12824. https://doi.org/10.1021/ie3018274

Espinoza, J. Naranjo, T. (2014). Diseño de una planta de reciclaje de plásticos en Cuenca. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/bitstream/123456789/7014/1/UPS-CT003680.pdf

Erdogan, S., & Sinan, S. (2020). Recycling of waste plastics into pyrolytic fuels and their use in IC engines. IntechOpen. https://doi.org/10.5772/intechopen.90639

Jahirul, M., Faisal, F., Rasul, M., Schaller, D., Khan, M., & Dexter, R. (2022). Automobile fuels (diesel and petrol) from plastic pyrolysis oil—Production and characterisation. Energy Reports, 8, 1571-1581. https://doi.org/10.1016/j.egyr.2022.10.018

Jung, S.-H., Cho, M.-H., Kang, B.-S., & Kim, J.-S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. https://doi.org/10.1016/j.fuproc.2009.10.009

Klug, M. (2012). Pirólisis, un proceso para derretir la biomasa. Professional Engineering Publishers. https://revistas.pucp.edu.pe/index.php/quimica/article/view/5547

Krishna Moorthy Rajendran, V. C. (2020). Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Science of the Total Environment, 733, 139101. https://doi.org/10.1016/j.scitotenv.2020.139101

López, A., Marco, I., Caballero, B., Laresgoiti, M., & Adrados, A. (2011). Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Processing Technology, 92(2), 253–260. https://doi.org/10.1016/j.fuproc.2010.10.011

Magaña, R. C., & Suárez, C. T. (2006, enero). Análisis del impacto ambiental de los plásticos en México. http://ri.uaemex.mx/bitstream/handle/20.500.11799/104205/secme16867_6.pdf?sequence=6&isAllowed=y

Miandad, R., Barakat, M., Aburiazaiza, A. S., Rehan, M., & Nizami, A. S. (2016). Plastic waste management: A review of pyrolysis technologies. Process Safety and Environmental Protection, 102, 822–838. https://doi.org/10.1016/j.psep.2016.06.022

Muley, P. D., Henkel, C., Abdollahi, K. K., & Boldor, D. (2015). Pyrolysis and catalytic upgrading of pinewood sawdust using an induction heating reactor. Energy & Fuels, 29(12), 8056–8065. https://doi.org/10.1021/acs.energyfuels.5b01878

Ndiaye, N., Derkyi, N., & Amankwah, E. (2023). Pyrolysis of plastic waste into diesel engine-grade oil. Scientific African, 21, e01547. https://doi.org/10.1016/j.sciaf.2023.e01547

ONU. (2022). Noticias ONU: Plásticos y medio ambiente. Obtenido de https://news.un.org/es/story/2022/06/1509892

Park, C., Kim, S., Kwon, Y., & Jeong, C. (2020). Pyrolysis of polyethylene terephthalate over carbon-supported Pd catalyst. Catalysts, 10(5), 496. https://doi.org/10.3390/catal10050496

Rahman, M. H., Bhoi, P. R., & Menezes, P. L. (2023). Pyrolysis of waste plastics into fuels and chemicals: A review. Renewable and Sustainable Energy Reviews, 180, 133135. https://doi.org/10.1016/j.rser.2023.133135

Rajendran, K. M., Chintala, V., Sharma, A., Pal, S., Pandey, J. K., & Ghodke, P. (2020). Review of catalyst materials in achieving the liquid hydrocarbon fuels from municipal mixed plastic waste (MMPW). Materials Today: Communications, 22, 100708. https://doi.org/10.1016/j.mtcomm.2020.100708

Sharuddin, S. D., Abnisa, F., Daud, W. M., & Aroua, M. K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. https://doi.org/10.1016/j.enconman.2016.02.037

Subhashini, S., & Mondal, T. (2023). Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil. Journal of Environmental Management, 343, 118184. https://doi.org/10.1016/j.jenvman.2023.118184

Walker, T. R., & Fequet, L. (2023). Current trends of unsustainable plastic production and micro(nano)plastic pollution. TrAC Trends in Analytical Chemistry, 163, 117037. https://doi.org/10.1016/j.trac.2023.117037

Williams, P. T., & Slaney, E. (2007). Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures. Resources, Conservation and Recycling, 51(4), 754–769. https://doi.org/10.1016/j.resconrec.2006.12.002

Wong, S., Ngadi, N., Abdullah, T., & Inuwa, I. (2015). Current state and future prospects of plastic waste as a source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167–1180. https://doi.org/10.1016/j.rser.2015.04.063

Publicado

09-01-2025

Cómo citar

Torres, J., Vinces, M., Castro, P., & Arias, J. (2025). Comparación del rendimiento de los procesos de pirolisis del PET, LDPE y PS, en un reactor prototipo de proceso discontinuo. EASI: Ingeniería Y Ciencias Aplicadas En La Industria, 3(2), 47–56. https://doi.org/10.53591/easi.v3i2.1866