Kinetic Study of Supercritical Water Gasification of cellulose from Biomass

Authors

DOI:

https://doi.org/10.53591/easi.v3i2.1051

Keywords:

Biomass, Cellulose, SCWG, Kinetic, Reaction Order

Abstract

This work carried out the supercritical gasification of cellulose in water (SCWG). The products obtained from the reaction were measured and their kinetic parameters were determined. The SCWG of cellulose was carried out in a supercritical PFR reactor evaluating three reaction temperatures: 372 °C, 374 °C, 376 °C for a reaction time of 15 min. The reaction products were analyzed by gravimetry, liquid chromatography HPLC and gas chromatography. The kinetic parameters of the SCWG reaction were then determined. This reaction produces hydrogen, with high energy potential, and lactic acid, a high-value product. The results show that, by raising the temperature of cellulose from subcritical to supercritical, the production of both compounds increases, reaching its highest concentration at a temperature of 376 °C and pressure of 3300 psi. To determine the kinetic parameters, integrated equations were used, revealing that the SCWG reaction follows first-order kinetics under the analyzed operating conditions. and its kinetic constants for each temperature are: k1=0.01386 〖min〗^(-1), k2= 0.01538 〖min〗^(-1) and k3=0.01529 〖min〗^(-1). This study advances the understanding of supercritical gasification as an alternative to convert waste into valuable products.

Author Biographies

Sebastian Chico, Facultad de Ingeniería Química, Universidad Central del Ecuador. 170129 Quito, Ecuador.

Chemical Engineer (2023). Universidad central de Ecuador, Ecuador.

Michelle Romero, Universidad Internacional de La Rioja, España.

Chemical Engineer (2020, Escuela Politécnica Nacional, Ecuador), M.Sc. in Environmental and Energy Management (Universidad de la Rioja, Spain). She has been working with the National Institute of Energy Efficiency and Renewable Energies, now the Geological and Energy Research Institute, since 2016. Research interest are focused on renewable energies and energy production from waste.

Diego V. Chulde Ch., Universidad Central del Ecuador, Ecuador.

Diego Vladimir Chulde Chulde, is a Chemical Engineer from the Central University of Ecuador, works at the Geological and Energy Research Institute as a Technical Analyst in the projects: "Study of alternatives for energy use of residual biomass from the "Piñón para Galápagos" project" and "Study of the use of the electrical surplus of the national interconnected system (sni) ​​through thermochemical processes as an alternative for long-term energy storage" and led the project "Hydrogen production from biomass from banana plant waste through catalytic gasification in water at supercritical temperature", has several scientific publications on renewable energies and collaborates in the project "Study of the obtaining of Bio-Products from the pyrolysis of the Organic Fraction of Urban Solid Waste (FORSU) for mitigation of environmental impacts and waste revalorization." – funds aecid”https://orcid.org/0000-0002-8260-3184

Ricardo A. Narváez C., Facultad de Ingeniería Química, Universidad Central del Ecuador. 170129 Quito, Ecuador.

Ricardo A. Narváez Cueva is a Chemical Engineer (2009, Universidad Central de Ecuador, Ecuador), with a Master's degree in renewable Energy (2012, Loughborough University, UK) and a PhD in Electrical and Electronic Engineering (2019, Universidad de Loughborough, UK).

References

Álvarez Alonso, L. (2021). Gasificación de Aceites con Agua en Estado Supercrítico. PhD dissertation, Universidad de Oviedo/Spain. http://hdl.handle.net/10651/61462

Basu, P. (2010). Biomass Gasification and Pyrolysis. Burlington: Elsevier. ISBN 9780123749888.

Brijaldo MH, Castillo C, Pérez G. (2021). Principales Rutas en la Producción de Hidrógeno. Ingeniería y Competitividad, 23(2), e30211155. https://doi.org/10.25100/iyc.v23i2.11155.

Castiblanco, O. y Cárdenas, D.J. (2020). Producción de Hidrógeno y su Perspectiva en Colombia: una revisión. Gestión y Ambiente, 23(2), 299-31. DOI 10.15446/ga.v23n2.86466.

Chen, J., Liang, J., Xu, Z., & E, J. (2020). Assessment of supercritical water gasification process for combustible gas production from thermodynamic, environmental and techno-economic perspectives: A review. Energy Conversion And Management, 226, 113497. https://doi.org/10.1016/j.enconman.2020.113497.

Chico Proaño, S. N. (2023). Estudio cinético y modelado de la gasificación de biomasa residual proveniente del cultivo de banano en agua supercrítica. Bs. dissertation, Universidad Central de Ecuador/Ecuador. https://www.dspace.uce.edu.ec/server/api/core/bitstreams/544a75aa-7938-4369-95da-536c8bc07e8c/content

Kaza, S., Yao, L.C., Bhada-Tata, P. y Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. http://hdl.handle.net/10986/30317

Li, H., Hu, Y., Wang, H., Han, X., El-Sayed, H., Zeng, Y., & Xu, C. C. (2022). Supercritical water gasification of lignocellulosic biomass: Development of a general kinetic model for prediction of gas yield. Chemical Engineering Journal, 433, 133618. https://doi.org/10.1016/j.cej.2021.133618.

Mondragón, F. (2021). Ciclos del dióxido de carbono en la formación y utilización de combustibles fósiles y su efecto en el cambio climático. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales. https://doi.org/10.18257/raccefyn.1364.

Okolie, J.A., 2021. Supercritical Water Gasification of Lignocellulosic Biomass Materials for Hydrogen Production. Ph.D. dissertation, University of Saskatchewan, Saskatoon /Canada. https://harvest.usask.ca/server/api/core/bitstreams/ef547e9a-c7f4-4226-b97e-a189de9b11f3/content

Özdenkçi, K., Prestipino, M., Björklund-Sänkiaho, M., Galvagno, A., & De Blasio, C. (2020). Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency. Renewable And Sustainable Energy Reviews, 134, 110146. https://doi.org/10.1016/j.rser.2020.110146.

Reddy, S. N., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Supercritical water gasification of biomass for hydrogen production. International Journal Of Hydrogen Energy, 39(13), 6912-6926. https://doi.org/10.1016/j.ijhydene.2014.02.125.

Serrano, J., Mejía, W., Ortiz, J., Sánchez, A. & Zalamea, S., 2017. Determination of the Potential Electric Generation from Biomass in Ecuador. Revista de la Facultad de Ciencias Químicas, 17, 41-61. https://dspace.ucuenca.edu.ec/bitstream/123456789/29791/1/4.%201592-4835-1-PB.pdf.

Shah, S., & Venkatramanan, V. (2019). Advances in Microbial Technology for Upscaling Sustainable Biofuel Production. En Elsevier eBooks (pp. 69-76). https://doi.org/10.1016/b978-0-444-63504-4.00005-0.

Uribe, D.D., 2022. Análisis técnico-económico de una central térmica de cogeneración a partir de la gasificación de biomasa residual producida en la nueva zona norte de la ciudad de Medellín. Bs. dissertation, Universidad de Antioquia, Antoquia/Colombia. https://hdl.handle.net/10495/26243

Yakaboylu, O., Harinck, J., Smit, K., & De Jong, W. (2015). Supercritical Water Gasification of Biomass: A Literature and Technology Overview. Energies, 8(2), 859-894. https://doi.org/10.3390/en8020859.

Yong, T. L., & Matsumura, Y. (2012). Reaction Kinetics of the Lignin Conversion in Supercritical Water. Industrial & Engineering Chemistry Research, 51(37), 11975-11988. https://doi.org/10.1021/ie300921d.

Published

2025-01-09

How to Cite

Chico, S., Romero, M., Chulde Ch., D. V., & Narváez C., R. A. (2025). Kinetic Study of Supercritical Water Gasification of cellulose from Biomass. EASI: Engineering and Applied Sciences in Industry, 3(2), 1–10. https://doi.org/10.53591/easi.v3i2.1051