SARS-CoV-2 multivariable representation in South American countries by using dynamic Biplot and ARIMA modeling infections and lethality
DOI:
https://doi.org/10.53591/easi.v1i2.1857Keywords:
Coronavirus, COVID-19, ARIMA, BiplotAbstract
The coronavirus (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus that has generated a global health crisis. On March 11, 2020, this disease was classified as a pandemic, the most affected regions were Latin America and the Caribbean, due to various factors such as population density, and incapacity in health systems, among others. In this study, a general analysis of the data on infections and deaths from ten South American countries will be carried out, to identify which country has best managed the pandemic according to its contagion and lethality results. A prediction was made for the number of infections and deaths caused by Covid-19, using data reported to the WHO (World Health Organization). The ARIMA model and the dynamic Biplot method were used for this study to represent the analysis. It was found that Peru has a high case fatality rate compared to the countries analyzed, and Peru has a higher number of deaths from the disease.
References
Araújo Morais, L. R., & da Silva Gomes, G. S. (2022). Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model. Applied Soft Computing, 126. https://doi.org/10.1016/j.asoc.2022.109315
Box, G. E., Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Da: San Francisco.
Cárdenas, O., Vicente Villardon, J. L., & Galindo Villardón, M. P. (2007). Los Métodos Biplot: Evolución y Aplicaciones. Revista Venezolana De Análisis De Coyuntura, XIII (1), 279-303. https://www.redalyc.org/pdf/364/36413113.pdf
Egido, J., Galindo, P. (2015). Dynamic Biplot. Evolution of the Economic Freedom in The European Union. British Journal of Applied Science and Technology, 11(3), 1-13. https://DOI:10.9734/BJAST/2015/20289
Fan, W. (2022). Prediction of Monetary Fund Based on ARIMA Model. Procedia Computer Science, 208, 277-285. https://doi.org/10.1016/j.procs.2022.10.040
Figueiredo, A. M. D., Daponte, A., Figueiredo, D. C. M. M. D., Gil-García, E., & Kalache, A. (2022). Letalidad De La COVID-19: Ausencia De Patrón Epidemiológico. Gaceta Sanitaria, 35, 355-357. doi: 10.1016/j.gaceta.2020.04.001
Gabriel, K. R. (1980). Biplot Display Of Multivariate Matrices For Inspection Of Data And Diagnosis. Rochester Univ Ny.
Galindo, M. P. (1986). Una Alternativa De Representación Simultánea. Hj-Biplot. Qüestiió: Quaderns D'estadística I Investigació Operativa, 10(1), 13-23. https://dialnet.unirioja.es/servlet/articulo?codigo=2360880
González Casimiro, M. P. (2009). Análisis De Series Temporales: Modelos Arima. Economía Aplicada Iii/Ekonomia Aplikatua Iii, Upv/Ehu. https://Doi.Org/10/12492
Gómez-Marcos, M.-T., Ruiz-Toledo, M., Vicente-Galindo, M.-P., Martín-Rodero, H., Ruff-Escobar, C., & Galindo-Villardón, M.P. (2021). Multivariate dynamics of Spanish universities in international rankings. Profesional De La información, 30(2). https://doi.org/10.3145/epi.2021.mar.10
Kunst, J. (2020). Highcharter: A Wrapper For The 'Highcharts' Library. Tomado De Https://Jkunst.Com/Highcharter/Authors.Html
Massó Ibarra, V. (2018). Rpubs—Modelos Arima. Recuperado 17 De Octubre De 2022, De https://Rpubs.Com/Valeamasso/386527
Newbold, P. (1983). Arima Model Building And The Time Series Analysis Approach To Forecasting. Journal Of Forecasting, 2(1), 23-35. https://Doi.Org/10.1002/For.3980020104
Nualles, M. V. (2002). Los Métodos Biplot Como Herramienta De Análisis De Interacción De Orden Superior En Un Modelo Lineal/Bilineal. [Disertación de Licenciatura, Universidad de Salamanca. España] http://repositorio.geotech.cu/jspui/handle/1234/2816
OMS. (2019). Nuevo Coronavirus 2019. OMS. Recuperado 17 De Octubre De 2022, De https://Www.Who.Int/Es/Emergencies/Diseases/Novel-Coronavirus-2019
Regenstein, J. K., & Jr. (2018). Finanzas Reproducibles Con R: Flujos De Código Y Aplicaciones Brillantes Para Análisis De Cartera. Chapman and Hall/CRC: New York. https://doi.org/10.1201/9781351052627
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luis Pilacuan-Bonete, Beatriz Salmon-Cedeño, Diana Gallegos-Zurita
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Contributions published in the EASI journal follow the open access license CC BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivs 4.0). This license empowers you as an author and ensures wide dissemination of your research while still protecting your rights.
For authors:
- Authors retain copyrights without restrictions according to CC BY-NC-ND 4.0 license.
- The journal obtains a license to publish the first original manuscript.
For readers/users:
Free access and distribution: Anyone can access, download, copy, print, and share the published article freely according to the license CC BY-NC-ND 4.0 terms.
Attribution required: If any third party use the published material, they must give credit to the creator by providing the name, article title, and journal name, ensuring the intellectual property of the author(s), and helping to build the scholarly reputation.
Non-commercial use: only noncommercial use of the published work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation by any third party.
No modifications allowed: The content of the published article cannot be changed, remixed, or rebuilt upon the author’s work. This ensures the integrity and accuracy of the research findings.