SARS-CoV-2 multivariable representation in South American countries by using dynamic Biplot and ARIMA modeling infections and lethality

Authors

DOI:

https://doi.org/10.53591/easi.v1i2.1857

Keywords:

Coronavirus, COVID-19, ARIMA, Biplot

Abstract

The coronavirus (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus that has generated a global health crisis. On March 11, 2020, this disease was classified as a pandemic, the most affected regions were Latin America and the Caribbean, due to various factors such as population density, and incapacity in health systems, among others. In this study, a general analysis of the data on infections and deaths from ten South American countries will be carried out, to identify which country has best managed the pandemic according to its contagion and lethality results. A prediction was made for the number of infections and deaths caused by Covid-19, using data reported to the WHO (World Health Organization). The ARIMA model and the dynamic Biplot method were used for this study to represent the analysis. It was found that Peru has a high case fatality rate compared to the countries analyzed, and Peru has a higher number of deaths from the disease.

Author Biographies

Luis Pilacuan, Universidad de Salamanca. Salamanca, España

Ingeniero Industrial (2012). Facultad de Ingeniería Industrial. Universidad de Guayaquil. Ecuador

Master in Business Administration (2015). Escuela de Administración de Empresas. Escuela Superior Politécnica del Litoral. Ecuador

Beatriz Salmon, Universidad de Guayaquil. Guayaquil, Ecuador

Ingeniero Industrial. Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador

Diana Gallegos-Zurita, Universidad de Guayaquil. Guayaquil, Ecuador

Electr. Eng. (2009) egresada de la ESPOL. M.Sc. en Enseñanza de la Física, ESPOL (2015). Actualmente, trabaja en la carrera de Telemática de la Universidad de Guayaquil (UG). Es investigadora en el área de Enseñanza de la Física (Facultad de Ingeniería Industrial-UG). Su trabajo de investigación está dirigido hacia la educación en ingeniería, mecánica, electricidad, y magnetismo.

References

Araújo Morais, L. R., & da Silva Gomes, G. S. (2022). Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model. Applied Soft Computing, 126. https://doi.org/10.1016/j.asoc.2022.109315

Box, G. E., Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Da: San Francisco.

Cárdenas, O., Vicente Villardon, J. L., & Galindo Villardón, M. P. (2007). Los Métodos Biplot: Evolución y Aplicaciones. Revista Venezolana De Análisis De Coyuntura, XIII (1), 279-303. https://www.redalyc.org/pdf/364/36413113.pdf

Egido, J., Galindo, P. (2015). Dynamic Biplot. Evolution of the Economic Freedom in The European Union. British Journal of Applied Science and Technology, 11(3), 1-13. https://DOI:10.9734/BJAST/2015/20289

Fan, W. (2022). Prediction of Monetary Fund Based on ARIMA Model. Procedia Computer Science, 208, 277-285. https://doi.org/10.1016/j.procs.2022.10.040

Figueiredo, A. M. D., Daponte, A., Figueiredo, D. C. M. M. D., Gil-García, E., & Kalache, A. (2022). Letalidad De La COVID-19: Ausencia De Patrón Epidemiológico. Gaceta Sanitaria, 35, 355-357. doi: 10.1016/j.gaceta.2020.04.001

Gabriel, K. R. (1980). Biplot Display Of Multivariate Matrices For Inspection Of Data And Diagnosis. Rochester Univ Ny.

Galindo, M. P. (1986). Una Alternativa De Representación Simultánea. Hj-Biplot. Qüestiió: Quaderns D'estadística I Investigació Operativa, 10(1), 13-23. https://dialnet.unirioja.es/servlet/articulo?codigo=2360880

González Casimiro, M. P. (2009). Análisis De Series Temporales: Modelos Arima. Economía Aplicada Iii/Ekonomia Aplikatua Iii, Upv/Ehu. https://Doi.Org/10/12492

Gómez-Marcos, M.-T., Ruiz-Toledo, M., Vicente-Galindo, M.-P., Martín-Rodero, H., Ruff-Escobar, C., & Galindo-Villardón, M.P. (2021). Multivariate dynamics of Spanish universities in international rankings. Profesional De La información, 30(2). https://doi.org/10.3145/epi.2021.mar.10

Kunst, J. (2020). Highcharter: A Wrapper For The 'Highcharts' Library. Tomado De Https://Jkunst.Com/Highcharter/Authors.Html

Massó Ibarra, V. (2018). Rpubs—Modelos Arima. Recuperado 17 De Octubre De 2022, De https://Rpubs.Com/Valeamasso/386527

Newbold, P. (1983). Arima Model Building And The Time Series Analysis Approach To Forecasting. Journal Of Forecasting, 2(1), 23-35. https://Doi.Org/10.1002/For.3980020104

Nualles, M. V. (2002). Los Métodos Biplot Como Herramienta De Análisis De Interacción De Orden Superior En Un Modelo Lineal/Bilineal. [Disertación de Licenciatura, Universidad de Salamanca. España] http://repositorio.geotech.cu/jspui/handle/1234/2816

OMS. (2019). Nuevo Coronavirus 2019. OMS. Recuperado 17 De Octubre De 2022, De https://Www.Who.Int/Es/Emergencies/Diseases/Novel-Coronavirus-2019

Regenstein, J. K., & Jr. (2018). Finanzas Reproducibles Con R: Flujos De Código Y Aplicaciones Brillantes Para Análisis De Cartera. Chapman and Hall/CRC: New York. https://doi.org/10.1201/9781351052627

Published

2022-12-29

How to Cite

Pilacuan, L., Salmon, B., & Gallegos, D. (2022). SARS-CoV-2 multivariable representation in South American countries by using dynamic Biplot and ARIMA modeling infections and lethality. EASI: Engineering and Applied Sciences in Industry, 1(2), 46–52. https://doi.org/10.53591/easi.v1i2.1857