Machine Learning Healthcare Scheduling System for the Chilean Primary Public Health Network

Authors

DOI:

https://doi.org/10.53591/easi.v1i2.1849

Keywords:

Machine Learning, Planificación de citas, Sistema primario de salud

Abstract

There are factors that measure the performance of health services, like efficient healthcare access. Managing access to these services to reduce waiting times for patients and users has been a relevant issue at the level of public policies. In Chile, one of the biggest challenges is to provide a system for assigning medical appointments, especially in the public network of Primary Health Care (PHC). Some of the initiatives are administrative procedures, but few of them are in the realm of digital transformation. This research aims to study different machine learning algorithms, including K-nearest neighbors, random forests, decision trees, and support vector machines. The goal is to classify medical appointments according to user preferences and resource constraints, based on data obtained from previous experiences. The potential application of these algorithms to manage an appointment assignment system is evaluated. The results are still conservative and highlight the need to optimize the parameters associated with these algorithms to ensure an efficient allocation of citations to system users.

Author Biographies

Berta Guerrero, Ingeniería en Información y Control de Gestión, Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo, Chile

Ingeniero en Información y Control de Gestión

Luis Pizarro, Ingeniería en Información y Control de Gestión, Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo, Chile

Ingeniero en Información y Control de Gestión

Vannessa Duarte, Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo, Chile

Ingeniero en Informática (2005), Universidad Nacional Experimental del Táchira, Venezuela 

Doctora en Ciencias de la Ingeniería (2018), Universidad Central de Venezuela, Venezuela 

References

Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. (2021). Healthcare scheduling in optimization context: A review. Health and Technology, 11(3), 445-469. From https://doi.org/10.1007/s12553-021-00547-5

Ahluwalia, S. C., Damberg, C. L., Silverman, M., Motala, A., & Shekelle, P. G. (2017). What Defines a High-Performing Health Care Delivery System: A Systematic Review. Joint Commission Journal on Quality and Patient Safety, 43(9), 450-459. From https://doi.org/10.1016/j.jcjq.2017.03.010

Almeida, P. F. (2018). Integração de rede e coordenação do cuidado: o caso do sistema de saúde do Chile. Ciência & Saúde Coletiva, 23, 2213-2228. From https://doi.org/10.1590/1413-81232018237.09622018

Annick, A. (2002). El sistema de salud chileno: 20 años de reformas. Salud Pública de México, 44(1), 60-68. From https://www.medigraphic.com/pdfs/salpubmex/sal-2002/sal021i.pdf

Ansell, C. y. (2018). Gobernando la turbulencia: una agenda organizacional-institucional. Perspectivas sobre la gestión pública y la gobernabilidad , 1 (1), 43-57. From https://doi.org/10.1093/ppmgov/gvx013

Arora, A., Bansal, S., Kandpal, C., Aswani, R., & Dwivedi. (2019). Measuring social media influencer index- insights from facebook, Twitter and Instagram. Journal of Retailing and Consumer Services, 49, 86-101. From https://doi.org/10.1016/j.jretconser.2019.03.012

Bass del Campo, G. C. (2012). Modelo de salud familiar en Chile y mayor resolutividad de la atención primaria de salud:?` contradictorios o complementarios? Repositorio Académico Universidad de Chile. From https://repositorio.uchile.cl/handle/2250/138083

Batun, S., & Begen, M. A. (2013). Optimization in Healthcare Delivery Modeling: Methods and Applications. En B. T. Denton (Ed.), Handbook of Healthcare Operations Management. Methods and Applications (pp. 75-119). Springer. From https://doi.org/10.1007/978-1-4614-5885-2_4

Bedregal, P., Zavala, C., Atria, J., Núñez, G., Pinto, M. J., & Valdéz, S. (2009). Acceso a redes sociales y de salud de población en extrema pobreza. Revista médica de Chile, 137(6), 753-758. From http://dx.doi.org/10.4067/S0034-98872009000600004

Bloom, D., Khoury, A., & Subbaraman, R. (2018). The promise and peril of universal health care. Science (New York, N.y.), 361(6404), eaat9644. Science, 361(6404), eaat9644. https://doi.org/10.1126/science.aat9644

Brandenburg, L., Gabow, P., Steele, G., Toussaint, J., & Tyson, B. (2015). Innovation and Best Practices in Health Care Scheduling. NAM Perspectives. doi:https://doi.org/10.31478/201502g

Coloma, F., Díaz, C., Espinoza, C., Flores, F., Guelfand, S., Leyton, C., . . . Mora, M. (2020). Análisis descriptivo de interconsultas emitidas en un período de 5 meses en dos centros de salud de la comuna de La Granja. From http://hdl.handle.net/11447/3351

Curtis, S. L.-R. (2018). Strengthening and implementing health technology assessment and the decision-making process in the Region of the Americas. Revista Panamericana de Salud Pública, 41, e165. From https://doi.org/10.26633/RPSP.2017.165

Dixit, S. K., & Sambasivan, M. (2018). A review of the Australian healthcare system: A policy perspective. SAGE Open Medicine, 6, 2050312118769211. https://doi.org/10.1177/2050312118769211

Dois, A., Contreras, A., Bravo, P., Mora, I., Soto, G., & Solís, C. (2016). Principios orientadores del Modelo Integral de Salud Familiar y Comunitario desde la perspectiva de los usuarios. Revista médica de Chile, 144(5), 585-592. From https://doi.org/10.4067/S0034-98872016000500005

Durrani, H. (2016). Healthcare and healthcare systems: Inspiring progress and future prospects. mHealth, 2, 3. https://doi.org/10.3978/j.issn.2306-9740.2016.01.03

Dzyabura, D., Jagabathula, S., & Muller, E. (2019). Accounting for discrepancies between online and offline product evaluations. Marketing. Science, 38(1), 88-106. https://doi.org/10.1287/mksc.2018.1124

Jahromi, A. T., Stakhovych, S., & Ewing, M. (2014). Managing B2B customer churn, retention and profitability. Industrial Marketing. Management, 43(7), 1258-1268. From https://doi.org/10.1016/j.indmarman.2014.06.016

Jiménez, S. B. (2018). Inequidad en el acceso a salud en Chile: Estudio multifactorial basado en la Encuesta CASEN del año 2013. Revista Chilena de Salud Pública, 22(1), 31-40. https://doi.org/10.5354/0719-5281.2018.51018

Kempa-Liehr, A. W., Lin, C. Y., Britten, R., Armstrong, D., Wallace, J., Mordaunt, D., & ’Sullivan, M. (2020). Healthcare pathway discovery and probabilistic machine learning. International Journal of Medical Informatics, 137, 104087. https://doi.org/10.1016/j.ijmedinf.2020.104087

Kim, H. (2021). Do online searches influence sales or merely predict them? The case of motion pictures. European Journal of Marketing, 55(2), 337-362. https://doi.org/10.1108/EJM-08-2019-0655

Pesse-Sorensen, K., Fuentes-García, A., & Ilabaca, J. (2019). Estructura y funciones de la Atención Primaria de Salud según el Primary Care Assessment Tool para prestadores en la comuna de Conchalí-Santiago de Chile. Revista médica de Chile, 147(3), 305-313. http://dx.doi.org/10.4067/S0034-98872019000300305

Pianykh, O. S., Guitron, S., Parke, D., Zhang, C., Pandharipande, P., Brink, J., & Rosenthal, D. (2020). Improving healthcare operations management with machine learning. Nature Machine Intelligence, 2(5), 266-273.https://doi.org/10.1038/s42256-020-0176-3

Rais, A., & Viana, A. (2011). Operations Research in Healthcare: A survey. International Transactions in Operational Research, 18(1), 1-31. https://doi.org/10.1111/j.1475-3995.2010.00767.x

Reynaldos-Grandón, K. S.-A.-M. (2018). Competencias profesionales, gestión clínica y grupos relacionados de diagnósticos. El caso de hospitales públicos chilenos. Revista de Salud Pública, 20, 472-478. From https://doi.org/10.15446/rsap.V20n4.66564

Salazar-Fernández, C. N. (2020). Autopercepción de salud en adultos mayores: moderación por género de la situación financiera, el apoyo social de amigos y la edad. Revista médica de Chile, 148(2), 196-203., 196-203. http://dx.doi.org/10.4067/s0034-98872020000200196

Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 101, 203-217. From https://doi.org/10.1016/j.jbusres.2019.04.018

Samorani, M. H. (2022). Overbooked and overlooked: machine learning and racial bias in medical appointment scheduling. Manufacturing & Service Operations Management, 24(6), 2825-2842. https://doi.org/10.1287/msom.2021.0999

Sánchez-Franco, M. J., Navarro-García, A., & Rondán-Cataluña, F. J. (2019). A naive Bayes strategy for classifying customer satisfaction: A study based on online reviews of hospitality services. Journal of Business Research, 101, 499-506. https://doi.org/10.1016/j.jbusres.2018.12.051

Schütte, S., Acevedo, P. N., & Flahault, A. (2018). Health systems around the world – a comparison of existing health system rankings. J Glob Health, 8(1), 010407. https://doi.org/10.7189/jogh.08.010407

Srinivas, S., & Ravindran, A. R. (2018). Optimizing outpatient appointment system using machine learning algorithms and scheduling rules: A prescriptive analytics framework. Expert Systems with Applications, 102, 245-261. https://doi.org/10.1016/j.eswa.2018.02.022

Syam, N., & Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and arti fi cial intelligence in sales research and practice. Industrial Marketing Management, 69, 135-146. https://doi.org/10.1016/j.indmarman.2017.12.019

Published

2022-12-17

How to Cite

Guerrero, B., Pizarro, L., & Duarte, V. (2022). Machine Learning Healthcare Scheduling System for the Chilean Primary Public Health Network. EASI: Engineering and Applied Sciences in Industry, 1(2), 1–13. https://doi.org/10.53591/easi.v1i2.1849