SARS-CoV-2 representación multivariable entre países de América del Sur mediante Biplot dinámico y modelado ARIMA de contagios y letalidad
DOI:
https://doi.org/10.53591/easi.v1i2.1857Palabras clave:
Coronavirus, COVID-19, ARIMA, BiplotResumen
El coronavirus (COVID-19) es una enfermedad infecciosa causada por el virus del SARS-CoV-2 que ha generado una crisis sanitaria a nivel mundial. El 11 de marzo del 2020 dicha enfermedad fue catalogada como pandemia, las regiones más afectadas fueron Latino América y el Caribe, debido a varios factores como densidad poblacional, incapacidad en los sistemas sanitarios, entre otras. En el presente estudio se realizará un análisis general de los datos de contagios y muertes de diez países de América del Sur, con la finalidad de identificar qué país ha manejado mejor la pandemia según sus resultados de contagio y letalidad. Se realizo una predicción para el número de contagios y muertes causadas por la Covid-19, utilizando datos notificados a la OMS (Organización mundial de la salud). Para este estudio se utilizó el modelo ARIMA y el método Biplot dinámico para la representación del análisis, donde se encontró que Ecuador tiene una alta tasa de letalidad con respecto a los países analizados, y Perú un mayor número de muertos producto de la enfermedad
Citas
Araújo Morais, L. R., & da Silva Gomes, G. S. (2022). Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model. Applied Soft Computing, 126. https://doi.org/10.1016/j.asoc.2022.109315
Box, G. E., Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control, Holden-Da: San Francisco.
Cárdenas, O., Vicente Villardon, J. L., & Galindo Villardón, M. P. (2007). Los Métodos Biplot: Evolución y Aplicaciones. Revista Venezolana De Análisis De Coyuntura, XIII (1), 279-303. https://www.redalyc.org/pdf/364/36413113.pdf
Egido, J., Galindo, P. (2015). Dynamic Biplot. Evolution of the Economic Freedom in The European Union. British Journal of Applied Science and Technology, 11(3), 1-13. https://DOI:10.9734/BJAST/2015/20289
Fan, W. (2022). Prediction of Monetary Fund Based on ARIMA Model. Procedia Computer Science, 208, 277-285. https://doi.org/10.1016/j.procs.2022.10.040
Figueiredo, A. M. D., Daponte, A., Figueiredo, D. C. M. M. D., Gil-García, E., & Kalache, A. (2022). Letalidad De La COVID-19: Ausencia De Patrón Epidemiológico. Gaceta Sanitaria, 35, 355-357. doi: 10.1016/j.gaceta.2020.04.001
Gabriel, K. R. (1980). Biplot Display Of Multivariate Matrices For Inspection Of Data And Diagnosis. Rochester Univ Ny.
Galindo, M. P. (1986). Una Alternativa De Representación Simultánea. Hj-Biplot. Qüestiió: Quaderns D'estadística I Investigació Operativa, 10(1), 13-23. https://dialnet.unirioja.es/servlet/articulo?codigo=2360880
González Casimiro, M. P. (2009). Análisis De Series Temporales: Modelos Arima. Economía Aplicada Iii/Ekonomia Aplikatua Iii, Upv/Ehu. https://Doi.Org/10/12492
Gómez-Marcos, M.-T., Ruiz-Toledo, M., Vicente-Galindo, M.-P., Martín-Rodero, H., Ruff-Escobar, C., & Galindo-Villardón, M.P. (2021). Multivariate dynamics of Spanish universities in international rankings. Profesional De La información, 30(2). https://doi.org/10.3145/epi.2021.mar.10
Kunst, J. (2020). Highcharter: A Wrapper For The 'Highcharts' Library. Tomado De Https://Jkunst.Com/Highcharter/Authors.Html
Massó Ibarra, V. (2018). Rpubs—Modelos Arima. Recuperado 17 De Octubre De 2022, De https://Rpubs.Com/Valeamasso/386527
Newbold, P. (1983). Arima Model Building And The Time Series Analysis Approach To Forecasting. Journal Of Forecasting, 2(1), 23-35. https://Doi.Org/10.1002/For.3980020104
Nualles, M. V. (2002). Los Métodos Biplot Como Herramienta De Análisis De Interacción De Orden Superior En Un Modelo Lineal/Bilineal. [Disertación de Licenciatura, Universidad de Salamanca. España] http://repositorio.geotech.cu/jspui/handle/1234/2816
OMS. (2019). Nuevo Coronavirus 2019. OMS. Recuperado 17 De Octubre De 2022, De https://Www.Who.Int/Es/Emergencies/Diseases/Novel-Coronavirus-2019
Regenstein, J. K., & Jr. (2018). Finanzas Reproducibles Con R: Flujos De Código Y Aplicaciones Brillantes Para Análisis De Cartera. Chapman and Hall/CRC: New York. https://doi.org/10.1201/9781351052627
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Luis Pilacuan-Bonete, Beatriz Salmon-Cedeño, Diana Gallegos-Zurita
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las contribuciones publicadas en la revista EASI se rigen por la licencia de acceso abierto CC BY-NC-ND 4.0 (Creative Commons Reconocimiento-NoComercial-SinDerivadas 4.0). Esta licencia te empodera como autor, y garantiza la amplia difusión de tu investigación mientras protege tus derechos.
Para autores:
- Los autores pueden reproducir y distribuir la obra en cualquier formato no comercial, siempre que la obra indique los autores y datos de la revista EASI, y no contravenga los puntos mencionados en el apartado de los permisos y prácticas editoriales.
- La revista obtiene una licencia para publicar y distribuir el manuscrito original.
Para lectores/usuarios:
Acceso y distribución gratuita: cualquier lector o usuario puede acceder, descargar, copiar, imprimir y compartir el artículo publicado libremente según los términos de la licencia CC BY-NC-ND 4.0.
Reconocimiento obligatorio: si un tercero utiliza el material publicado, debe dar crédito al creador proporcionando el nombre, el título del artículo y el nombre de la revista, lo que garantiza la propiedad intelectual del autor(es) y ayuda a construir su reputación académica.
Uso no comercial: solo se permite el uso no comercial del trabajo publicado. No comercial significa que no está destinado principalmente ni dirigido al aprovechamiento comercial o la compensación monetaria por parte de ningún tercero.
No se permiten modificaciones: el contenido del artículo publicado no se puede cambiar, mezclar o reconstruir a partir del trabajo del autor. Esto asegura la integridad y precisión de los resultados de la investigación.