Prediction of the Composite Required in the Design of a Toroidal Vessel Using an Artificial Neural Network

Authors

DOI:

https://doi.org/10.53591/iti.v13i13.1093

Keywords:

Toroidal Vessel, Optimization, Machine Learning, Artificial Neural Network

Abstract

Context: Within the design of toroidal vessels, minimizing the amount of material is very important for reducing production costs; Conventional methods used to minimize the amount of material are computationally time consuming each time a new container is tested. New techniques based on artificial intelligence require the prediction of the minimum amount of material required for the design of a container in the shortest possible time. Method: The prediction methodology is based on a linear regression model through an artificial neural network, which is implemented with the Keras model of Python; In its first phase, a data set created by a script with ANSYS APDL code is handled. Results: An artificial neural network model that learned to predict the minimum amount of material, adequate accuracy and loss of the model. Conclusions: A better performance of the model was obtained, the partition of the dataset into training and testing data, a level of precision was obtained that ensures the reliability of the machine learning model compared to the traditional ones.

Author Biographies

Darwin Patiño Pérez , University of Guayaquil

Ph.D

Miguel Botto-Tobar , University of Guayaquil

MSc en Ingeniería de Software, Métodos Formales y Sistemas de Información

Celia Munive Mora, DeSales University

BS

References

Agasi, O., Anderson, J., Cole, A., Berthold, M., Cox, M., & Dimov, D. (2018). What is an Artificial Neural Network (ANN)? - Definition from Techopedia. Techopedia.

Barbero, E. J., & Cosso, F. A. (2014). Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates. Composites Part B: Engineering, 56. https://doi.org/10.1016/j.compositesb.2013.08.084

Barbero, E. J., & Shahbazi, M. (2017). Determination of material properties for ANSYS progressive damage analysis of laminated composites. Composite Structures, 176, 768–779. Retrieved from https://doi.org/10.1016/j.compstruct.2017.05.074

Brownlee, J. (2016). Supervised and Unsupervised Machine Learning Algorithms. Understand Machine Learning Algorithms.

Brownlee, J. (2017). How to Use the Keras Functional API for Deep Learning. Machinelearningmastery., (1).

Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L. D., Kacprzak, E., & Groth, P. (2020). Dataset search: a survey. VLDB Journal, 29(1). https://doi.org/10.1007/s00778-019-00564-x

DeLay, T., & Roberts, K. (2003, November 1). Toroidal Tank Development for Upper-stages. Retrieved February 8, 2016, from http://ntrs.nasa.gov/search.jsp?R=20040084002

Karlijn Willems. (2019). (Tutorial) KERAS Tutorial: DEEP LEARNING in PYTHON - DataCamp.

Mathur, P. (2019). Machine Learning Applications Using Python. In Machine Learning Applications Using Python. https://doi.org/10.1007/978-1-4842-3787-8

Moore, M., Saxon, M., Venkateswara, H., Berisha, V., & Panchanathan, S. (2019). Say what? A dataset for exploring the error patterns that two ASR engines make. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2019-Septe. https://doi.org/10.21437/Interspeech.2019-3096

Patiño-Pérez, D., & Corz-Rodríguez, A. (2019). Optimum design of a toroidal pressure vessel of composite material for gas (CNG) powered vehicles. Dyna (Spain), 94(5), 546–553. https://doi.org/10.6036/9096

Patiño, D., & Corz, A. (2018). Comparative Analysis of Toroidal Pressure Vessels of Composite by Finite Elements. International Journal of Innovation and Applied Studies(IJIAS), 25(1), 162–175. Retrieved from http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-18-229-30

Patiño Pérez, D., Corz Rodriguez, A., & Mora, C. M. (2020). Diseño Optimo de un Recipiente a Presión Toroidal de Espesor Variable para Almacenar Hidrogeno en Automóviles Optimal Design of a Toroidal Pressure Vessel of Variable Thickness for Storing Hydrogen in Cars. ECUADORIAN SCIENCE JOURNAL, 4(2), 94–100. https://doi.org/10.46480/esj.4.2.107

Pedrycz, W., Sillitti, A., & Succi, G. (2016). Computational intelligence: An introduction. In Studies in Computational Intelligence. https://doi.org/10.1007/978-3-319-25964-2_2

Vick, M. J., & Gramoll, K. (2012). Finite Element Study on the Optimization of an Orthotropic Composite Toroidal Shell. Journal of Pressure Vessel Technology, 134(5), 1–7. https://doi.org/10.1115/1.4005873

Yegnanarayana, B. (1994). Artificial neural networks for pattern recognition. Sadhana, 19(2). https://doi.org/10.1007/BF02811896

Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2020). Gradient descent optimizes over-parameterized deep ReLU networks. Machine Learning, 109(3). https://doi.org/10.1007/s10994-019-05839-6

Published

2021-07-31

Issue

Section

Artículos