Thermo-hydraulic design of a horizontal shell and tube condenser for methanol condensation
Main Article Content
Abstract
Los condensadores de carcasa y tubos se consideran una parte importante de los sistemas de refrigeración y de las centrales eléctricas, así como de otras aplicaciones petroquímicas en las que se suelen emplear los intercambiadores de calor. Este artículo presenta el diseño termohidráulico de un intercambiador de calor de carcasa y tubos horizontales de dos pasos de tubo (1-2) para condensar una corriente de vapores de metanol puro utilizando agua fría como refrigerante. Se calcularon varios parámetros de diseño como el área de transferencia de calor (119,33 m2); el número de tubos (285); el diámetro interno de la carcasa (800,56 mm) y el coeficiente de transferencia de calor global (618,47 W/m2. K). El calor calculado para este servicio de intercambio de calor fue de 8.272,5 kW, mientras que el caudal requerido para el agua enfriada fue de 151,59 kg/s. Las caídas de presión calculadas para las corrientes de metanol de condensación y agua enfriada fueron de 7.372,55 Pa y 84.289,69 Pa respectivamente, que están por debajo de los valores límite máximos establecidos por el proceso. El condensador de carcasa y tubo diseñado 1-2 era del tipo de cabeza flotante extraíble, con un corte de deflector del 45% y un espaciado de deflector igual al diámetro interno de la carcasa.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
E. J. Fernandes and S. H. Krishanmurthy, "Design and analysis of shell and tube heat exchanger," Int. J. Simul. Multidisci. Des. Optim., vol. 13, no. 15, pp. 1-8, 2022. https://doi.org/10.1051/smdo/2022005
D. Bogale, "Design and Development of Shell and Tube Heat Exchanger for Harar Brewery Company Pasteurizer Application (Mechanical and Thermal Design)," American Journal of Engineering Research, vol. 03, no. 10, pp. 99-109, 2014.
P. Bichkar, O. Dandgaval, P. Dalvi, R. Godase, and T. Dey, "Study of Shell and Tube Heat Exchanger with the Effect of Types of Baffles," Procedia Manufacturing, vol. 20, pp. 195-200, 2018. https://doi.org/10.1016/j.promfg.2018.02.028
B. M. Reyes, "Diseño de un intercambiador de calor (condensador) para el sistema de la Bomba de Vapor Desalinizadora Solar de Alta Potencia del proyecto Walfisch," Tesis de Diploma, Universidad Técnica Federico Santa María, Valparaíso, Chile, 2021.
I. C. Nwokedi and C. A. Igwegbe, "Design of Shell and Tube Heat Exchanger with Double Passes," Journal of Engineering Research and Reports, vol. 3, no. 4, pp. 1-12, 2018. https://doi.org/10.9734/JERR/2018/v3i416883
J. Saari, Heat Exchanger Dimensioning. Lappeenranta, Finland: Lappeenranta University of Technology, 2015.
S. Sahajpal and P. D. Shah, "Thermal Design of Ammonia Desuperheater-Condenser and Comparative Study with HTRI," Procedia Engineering, vol. 51, pp. 375-379, 2013. https://doi.org/10.1016/j.proeng.2013.01.052
R. Smith, Chemical Process Design and Integration. West Sussex, England: John Wiley & Sons Ltd., 2005.
B. K. Soltan, M. Saffar-Avval, and E. Damangir, "Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing," Applied Thermal Engineering, vol. 24, pp. 2801-2810, 2004. https://doi.org/10.1016/j.applthermaleng.2004.04.005
T. Karlsson and L. Vamling, "Flow fields in shell-and-tube condensers: comparison of a pure refrigerant and a binary mixture," International Journal of Refrigeration, vol. 28, pp. 706-713, 2005. https://doi.org/10.1016/j.ijrefrig.2004.12.008
D. E. Dana, "Diseño de un condensador para un loop experimental para porbar maniobras de arranque del reactor CAREM," Proyecto Integrador, Universidad Nacional de Cuyo, Mendoza, Argentina, 2016.
R. K. Kapooria, S. Kumar, and K. S. Kasana, "Technological investigations and efficiency analysis of a steam heat exchange condenser: conceptual design of a hybrid steam condenser " Journal of Energy in Southern Africa, vol. 19, no. 3, pp. 35-45, 2008.
M. Lucena, C. Linárez, and E. Rodríguez, "Rediseño y construcción de un condensador para el estudio de convección forzada," REDIP. UNEXPO. VRB. Venezuela, vol. 5, no. 4, pp. 941-957, 2015.
R. Elakkiyadasan, P. M. Kumar, M. Subramanian, N. Balaji, M. Karthick, and S. Kaliappan, "Optimization of Shell and Tube Condenser for Low Temperature Thermal Desalination Plant," E3S Web of Conferences, vol. 309, p. 01011, 2021. https://doi.org/10.1051/e3sconf/202130901011
B. Allen, M. Savard-Goguen, and L. Gosselin, "Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger including condensers," Applied Thermal Engineering, vol. 29, pp. 3437–3444, 2009. https://doi.org/10.1016/j.applthermaleng.2009.06.006
J. Canoura, "Diseño de un condensador para planta de producción industrial," Trabajo de Fin de Grado, Universidad de La Coruña, La Coruña, España, 2016.
R. Llopis, R. Cabello, and E. Torrella, "A dynamic model of a shell-and-tube condenser operating in a vapour compression refrigeration plant," International Journal of Thermal Sciences, vol. 47, pp. 926-934, 2008. https://doi.org/10.1016/j.ijthermalsci.2007.06.021
H. Hajabdollahi, P. Ahmadi, and I. Dincer, "Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm," International Journal of Refrigeration, vol. 34, pp. 1066-1076, 2011. https://doi.org/10.1016/j.ijrefrig.2011.02.014
V. Milián, J. Navarro-Esbrí, D. Ginestar, F. Molés, and B. Peris, "Dynamic model of a shell-and-tube condenser. Analysis of the mean void fraction correlation influence on the model performance," Energy, vol. 59, pp. 521-533, 2013. http://dx.doi.org/10.1016/j.energy.2013.07.053
S. K. Singh and J. Sarkar, "Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant," International Communications in Heat and Mass Transfer, vol. 98, pp. 41-48, 2018. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.005
H. Feng, C. Cai, L. Chen, Z. Wu, and G. Lorenzini, "Constructal design of a shell-and-tube condenser with ammonia-water working fluid," International Communications in Heat and Mass Transfer, vol. 118, p. 104867, 2020. https://doi.org/10.1016/j.icheatmasstransfer.2020.104867
A. Pérez, M. I. L. Rosa, Z. M. Sarduy, E. Ranero, and E. J. Pérez, "Thermo-hydraulic design of a horizontal shell and tube heat exchanger for ethanol condensation," Nexo Revista Científica, vol. 36, no. 04, pp. 551-571, 2023. https://doi.org/10.5377/nexo.v36i04.16770
R. Sinnott and G. Towler, Chemical Engineering Design, 6th ed. (Coulson and Richardson's Chemical Engineering Series). Oxford, United Kingdom: Butterworth-Heinemann, 2020.
I. P. S. Pereira, M. J. Bagajewicz, and A. L. H. Costa, "Global optimization of the design of horizontal shell and tube condensers," Chemical Engineering Science, vol. 236, p. 116474, 2021. https://doi.org/10.1016/j.ces.2021.116474
S. Kakaç, H. Liu, and A. Pramuanjaroenkij, Heat Exchangers - Selection, Rating and Thermal Design, 3rd ed. Boca Raton, U.S.A: CRC Press, 2012.
E. Cao, Heat transfer in process engineering. New York, U.S.A: The McGraw-Hill Companies, Inc., 2010.
M. Nitsche and R. O. Gbadamosi, Heat Exchanger Design Guide - A Practical Guide for Planning, Selecting and Designing of Shell and Tube Exchangers. Oxford, U.K: Butterworth Heinemann, 2016.
D. W. Green and M. Z. Southard, Perry's Chemical Engineers' Handbook, 9th ed. New York, U.S.A: McGraw-Hill Education, 2019.