Identification of vehicular traffic patterns using density-based trajectory clustering algorithms

Authors

  • Gary Reyes University of Guayaquil https://orcid.org/0000-0002-3711-1906
  • José Roldán University of Guayaquil
  • Angélica Macias University of Guayaquil
  • Francisco Cordova University of Guayaquil
  • Oscar León University of Guayaquil

DOI:

https://doi.org/10.53591/iti.v14i17.1473

Keywords:

Congestion, Clustering, Trajectories, Traffic, Density

Abstract

Context: This paper focuses on identifying congestion patterns. Three data sets from the cities of Beijing, Guayaquil and Rome are used for this purpose. Method: The implementation of the Dyclee algorithm, modified to group cells of trajectories based on speeds, is carried out, with which experiments are performed in which the patterns of service volume and operability index are adequately calculated based on their results. The predominant research modality is bibliographic. However, the study also includes characteristics of a field research, because the algorithms were executed with GPS trajectory data from three different data sets. Results: To validate this research, two experiments were run. In the first experiment it was determined that the Dyclee algorithm correctly calculated the congestion patterns. In the second experiment it was found that TRADBSCAN obtained the best results with respect to validation metrics taking into account the established parameters. Conclusions: It was concluded that the Dyclee density-based clustering algorithm is able to identify vehicular congestion patterns.

References

Ansari, Z., Azeem, M. F., Ahmed, W., & Babu, A. (2015). Quantitative Evaluation of Performance and Validity Indices for Clustering the Web Navigational Sessions. World of Computer Science and Information Technology Journal, 1, 217–226. https://arxiv.org/ftp/arxiv/papers/1507/1507.03340.pdf

Arias, B., & Zamora, B. (2020). Algoritmo de Clustering dinámico para trayectoria GPS.http://repositorio.ug.edu.ec/bitstream/redug/52739/1/B-CISC-PTG-1940-2021 Arias Martinez Bryan Jose - Zamora Litardo Bryan Steven.pdf%0A

Barbosa Roa, N., Travé-Massuyès, L., & Grisales-Palacio, V. H. (2019). DyClee: Dynamic clustering for tracking evolving environments. Pattern Recognition, 94, 162–186. https://doi.org/https://doi.org/10.1016/j.patcog.2019.05.024

Bastidas, M., & Burgos, D. (2021). Identificación de congestionamiento vehicular a través del análisis de agrupamiento de trayectorias GPS.http://repositorio.ug.edu.ec/handle/redug/57168%0A

Cedeño, P., & Piña, Á. (2021). Adaptación del algoritmo de clustering dinámico Pyclee para el procesamiento y análisis de trayectorias GPS. http://repositorio.ug.edu.ec/bitstream/redug/57094/1/B-CISC-PTG-1996-2021 Cedeño Núñez Pedro Xavier - Piña Naranjo Ángel Ricardo .pdf

Hasperué, W., Estrebou, C. A., Camele, G., López, P., Jimbo Santana, P. R., Reyes Zambrano, G., Lanzarini, L. C., & Fernández Bariviera, A. (2021). Procesamiento inteligente de grandes volúmenes de información y de flujos de datos. XXIII Workshop de Investigadores En Ciencias de La Computación (WICC 2021, Chilecito, La Rioja). http://sedici.unlp.edu.ar/handle/10915/120089

Liu, L., Song, J., Guan, B., Wu, Z., & He, K. (2011). Tra-DBScan: A Algorithm of Clustering Trajectories. Applied Mechanics and Materials, 121–126. https://doi.org/10.4028/www.scientific.net/AMM.121-126.4875

Reyes, G., Lanzarini, L. C., Estrebou, C. A., & Maquilón, V. (2021). Vehicular Flow Analysis Using Clusters. XXVII Congreso Argentino de Ciencias de La Computación (CACIC)(Modalidad Virtual, 4 al 8 de Octubre de 2021). http://sedici.unlp.edu.ar/handle/10915/130341

Reyes, G., Lanzarini, L., Hasperué, W., & Bariviera, A. F. (2020). GPS trajectory clustering method for decision making on intelligent transportation systems. Journal of Intelligent & Fuzzy Systems, 38, 5529–5535. https://doi.org/10.3233/JIFS-179644

Reyes, G., Lanzarini, L., Hasperué, W., & Bariviera, A. F. (2021). Proposal for a Pivot-Based Vehicle Trajectory Clustering Method. Transportation Research Record, 03611981211058429. https://doi.org/10.1177/03611981211058429

Reyes Zambrano, G. (2019). GPS Trajectory Compression Algorithm. In M. Botto-Tobar, J. Barzola-Monteses, E. Santos-Baquerizo, M. Espinoza-Andaluz, & W. Yánez-Pazmiño (Eds.), Computer and Communication Engineering (pp. 57–69). Springer International Publishing.

Scherl, M. (2010). Benchmarking of Cluster Indices. https://epub.ub.uni-muenchen.de/12797/1/DA_Scherl.pdf

Thomson, I., & Bull, A. (2002). La congestión del tránsito urbano: Causas y consecuencias económicas y sociales. Revista de La CEPAL, 2002(76), 109–121. https://doi.org/10.18356/fd4a1f83-es

Transportation Research Board. (2000). Highway Capacity Manual. Transportation Research Board, National Research Council.

Wang, S., Ding, S., & Xiong, L. (2020). A New System for Surveillance and Digital Contact Tracing for COVID-19: Spatiotemporal Reporting Over Network and GPS. JMIR MHealth and UHealth, 8(6), 2–2. https://doi.org/10.2196/19457

Published

2022-11-30

Issue

Section

Artículos

Similar Articles

You may also start an advanced similarity search for this article.