Mechanical performance of mortars reinforced with steel fibers
DOI:
https://doi.org/10.53591/easi.v4i1.2410Keywords:
Reinforced mortar, steel fiber, strength-deformation curve, compression test, informal housingAbstract
This article focuses on the evaluation of the resistance of mortars to indirect tension and compression, simple and reinforced, with different percentages of steel fiber. The aim is to find resistant and economical solutions to reinforce informal housing, through the use of plaster that improves the general characteristics of a masonry. Masonry constructed in an informal or artisanal manner has a high degree of structural vulnerability. First, the indirect tensile strength and displacements supported by simple and reinforced mortars are compared, where it is observed that reinforced mortars offer greater strength and deformation capacity as a function of the percentage of fiber. Then, the compressive strength is compared, where the reinforced mortars also show adequate results. In terms of economics, the reinforced mortar presents disadvantages due to the cost of the fibers; in the percentages studied in this article (10, 15, 20 and 25%), the use of reinforced mortars for informal housing is not so attractive; it is recommended to develop similar investigations with different percentages of fiber.
References
Aguirre, J. (2021). Las fibras de vidrio, acero y polipropileno en forma de hilachas, aplicadas como fibras de refuerzo en la elaboración de morteros de cemento.
ASTM C128. (2023). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate (Vols. CO128-22).
ASTM C188-17. (2023). Standard Test Method for Density of Hydraulic Cement (Vols. CO188-17).
ASTM International. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
ASTM International. (2023). Standard Test Method for Density of Hydraulic Cement.
Bustos García, A. (2018). Morteros con propiedades mejoradas de ductilidad por adición de fibras de vidrio, carbono y basalto. 1–324.
Carrillo, J., Pincheira, J., & Flores, L. E. (2020). Quasi-static cyclic tests of confined masonry walls retrofitted with mortar overlays reinforced with either welded-wire mesh or steel fibers. Journal of Building Engineering, 27(October 2019), 10. https://doi.org/10.1016/j.jobe.2019.100975
Dawood, E. T., & Ramli, M. (2010). Flowable high-strength system as repair material. Structural Concrete, 11(4), 199–209. https://doi.org/10.1680/stco.2010.11.4.199
El Comercio / IG-EPN. (2011). La informalidad en la construcción es el mayor riesgo en un terremoto. Instituto Geofísico – Escuela Politécnica Nacional. https://www.igepn.edu.ec/servicios/noticias/381-la-informalidad-en-la-construcción-es-el-mayor-riesgo-en-un-terremoto
Gonzalez, G. (2015). Estudio de durabilidad de paredes de mamposteria reforzadas con mortero y fibras naturales y artificiales.
Guapán, U. C. N. (UCEM) – P. (n.d.). Ficha Técnica Cemento Hidráulico Guapán Tipo GU.
Guo, Y., Liu, X., Wang, X., Ye, Q., Xiang, K., & Wang, R. (2024). Multiscale Hybrid Steel Fiber Enhances the Impact Resistance and Crack Resistance of Cement-based Materials. Cailiao Daobao Materials Reports, 38(2). https://doi.org/10.11896/cldb.22030271
He, Y. (2023). Characterisation of unidirectional tensile failure performance of steel fibre nano high strength concrete. International Journal of Microstructure and Materials Properties, 16(6), 533–544. https://doi.org/10.1504/IJMMP.2023.134769
Hidayat, B. A., Sabdono, P., Indriyantho, B. R., & Hung, C.-C. (2021a). Compressive and flexural behavior of fiber-reinforced mortar: An experimental study. Aip Conference Proceedings, 2447. https://doi.org/10.1063/5.0072700
International, A. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
International, A. (2016). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.
International, A. (2023). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.
Kang, J., Shen, D., Shao, H., Huang, Q., & Liu, X. (2024). Experimental Study on Early-Age Cracking Behavior of Hooked-End Steel Fiber-Reinforced Concrete under Different Curing Temperatures. Journal of Materials in Civil Engineering, 36(10). https://doi.org/10.1061/JMCEE7.MTENG-17246
Li, C., Liu, J., Liu, J., Lv, J., & Yang, Z. (2011b). Quantitative evaluation and mechanism of crack resistance of steel fiber reinforced mortar. Kuei Suan Jen Hsueh Pao Journal of the Chinese Ceramic Society, 39(3), 531–536.
Marcalíková, Z., Procházka, L., Pešata, M., Boháčová, J., & Čajka, R. (2019). Comparison of material properties of steel fiber reinforced concrete with two types of steel fiber. IOP Conference Series: Materials Science and Engineering, 549(1). https://doi.org/10.1088/1757-899X/549/1/012039
Nam, J.W.; Kim, S.M.; Park, S.H.; Han, S. H. (2018). Performance of oxygen/argon plasma-treated steel fibres in cementitious composites. Construction and Building Materials, 189, 169–176. https://doi.org/10.1016/j.conbuildmat.2018.08.198
Nian, T., Wang, M., Li, P., Song, J., Ge, J., & Guo, R. (2024). Enhancing low-temperature crack resistance: A method for establishing meso-models and evaluating steel fiber-reinforced hot recycled asphalt mixtures. Construction and Building Materials, 438. https://doi.org/10.1016/j.conbuildmat.2024.137026
Nieto-Cárdenas, X., Takeuchi, C., Carrillo, J., & Cobos, C. (2023). Performance of non-structural masonry retrofitted with welded wire mesh and steel fibers under axial compression load. AIP Conference Proceedings, 2928(1). https://doi.org/10.1063/5.0170782
Pan, H., & Ma, Y. (2017). Impact Resistance of Steel Fiber Reinforced Concrete and Its Mechanism of Crack Resistance and Toughening. Jianzhu Cailiao Xuebao Journal of Building Materials, 20(6), 956–961. https://doi.org/10.3969/j.issn.1007-9629.2017.06.021
Quirós, L. (2018). Estudio del comportamiento mecánico del mortero reforzado con fibra de coco y modificado con óxido de hierro (Vol. 3, Issue 2). Universidad Pontificia Bolivariana.
Samaniego, V. (2020). En la construcción en Ecuador, la informalidad mata. Universidad Del Azuay. https://www.uazuay.edu.ec/noticias/en-la-construccion-en-ecuador-la-informalidad-mata
Sánchez, D. (2000). Tecnología del concreto y del mortero: Vol. Cuarta.
Shen, W., Chen, S., & Zhang, J. (2022). Calculation of Cracks in Partially Steel Fiber Reinforced Concrete Beams with BFRP Bars. Advances in Materials Science and Engineering, 2022. https://doi.org/10.1155/2022/9158379
Shi, K., Zhang, M., Zhang, T., Li, P., Zhu, J., & Li, L. (2021). Seismic performance of steel fiber reinforced high–strength concrete beam–column joints. Materials, 14(12). https://doi.org/10.3390/ma14123235
Vergara-Perucich, F., Fuster-Farfán, X., Rojas Rubio, I., Hidalgo Dattwyller, R., Rincón Quiroz, S., Álvarez, J. C., Alvarado Peterson, V., Meseguer Ruiz, O., & Lizana Vásquez, F. (2022). Vivienda informal y las organizaciones territoriales en América Latina. Revista de Geografía Norte Grande, 14(81), 5–14. https://doi.org/10.4067/s0718-34022022000100005
Younis, K. H., Jirjees, F. F., Yaba, H. K., & Maruf, S. M. (2021). Experimental study on impact resistance of concrete containing steel fibers. In Key Engineering Materials: Vol. 872 KEM. https://doi.org/10.4028/www.scientific.net/KEM.872.1
Zhang, M., Zhang, S., & Jing, J. (2025). Effect of steel fiber content on fatigue performance of high-strength concrete beams. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-96217-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Matías Renato Castro Castillo, Jaime Xavier Nieto-Cárdenas, Paúl Illescas-Cárdenas, Pilar Roxana Naspud Uruchima

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Contributions published in the EASI journal follow the open access license CC BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivs 4.0). This license empowers you as an author and ensures wide dissemination of your research while still protecting your rights.
For authors:
- Authors retain copyrights without restrictions according to CC BY-NC-ND 4.0 license.
- The journal obtains a license to publish the first original manuscript.
For readers/users:
Free access and distribution: Anyone can access, download, copy, print, and share the published article freely according to the license CC BY-NC-ND 4.0 terms.
Attribution required: If any third party use the published material, they must give credit to the creator by providing the name, article title, and journal name, ensuring the intellectual property of the author(s), and helping to build the scholarly reputation.
Non-commercial use: only noncommercial use of the published work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation by any third party.
No modifications allowed: The content of the published article cannot be changed, remixed, or rebuilt upon the author’s work. This ensures the integrity and accuracy of the research findings.








