Desempeño mecánico de morteros reforzados con fibras de acero

Autores/as

  • Matías Castro Castillo , Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101.
  • Jaime Nieto-Cárdenas Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. , Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. https://orcid.org/0000-0002-6343-9622 (no autenticado)
  • Paúl Illescas-Cárdenas Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. , Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. https://orcid.org/0000-0003-2615-6903 (no autenticado)
  • Pilar Naspud Uruchima Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. , Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101. https://orcid.org/0000-0002-4082-3373 (no autenticado)

DOI:

https://doi.org/10.53591/easi.v4i1.2410

Palabras clave:

Mortero reforzado, fibra de acero, curva de fuerza-desplazamiento, ensayo de compresión, vivienda informal

Resumen

Este artículo se centra en la evaluación de la resistencia a la tracción y compresión indirectas de morteros, simples y reforzados, con diferentes porcentajes de fibra de acero. El objetivo es encontrar soluciones resistentes y económicas para reforzar viviendas informales, mediante el uso de revoque que mejore las características generales de la mampostería. La mampostería construida de manera informal o artesanal presenta un alto grado de vulnerabilidad estructural. En primer lugar, se compara la resistencia a la tracción indirecta y los desplazamientos soportados por morteros simples y reforzados, donde se observa que los morteros reforzados ofrecen mayor resistencia y capacidad de deformación en función del porcentaje de fibra. Posteriormente, se compara la resistencia a la compresión, donde los morteros reforzados también muestran resultados adecuados. En términos económicos, el mortero reforzado presenta desventajas debido al costo de las fibras; en los porcentajes estudiados en este artículo (10, 15, 20 y 25%), el uso de morteros reforzados para viviendas informales no resulta tan atractivo; se recomienda desarrollar investigaciones similares con diferentes porcentajes de fibra.

Biografía del autor/a

  • Matías Castro Castillo, , Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101.

    Ingeniero Civil (2024). Universidad Católica de Cuenca, Ecuador. Áreas de experticia: Morteros.

  • Jaime Nieto-Cárdenas, Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101., Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101.

    Ingeniero Civil (2008). Universidad de Cuenca, Ecuador. M.Sc. en Construcciones (2014), Universidad de Cuenca, Ecuador. Diplomado en Estructuras (2021), Universidad Nacional de Colombia, Colombia. Profesor titular en la Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Áreas de experticia: Construcción, estructuras de acero, estructuras de hormigón, sismorresistencia, madera, lamina delgada, mampostería, resistencia de materiales, experimentación.

  • Paúl Illescas-Cárdenas, Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101., Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101.

    Ingeniero Civil (2011). Universidad Católica de Cuenca, Ecuador. M.Sc. en Construcciones (2022), Universidad Católica de Cuenca, Ecuador. M.Sc. en Tránsito, Transporte y Seguridad Vial (2016) Universidad del Azuay, Ecuador. Profesor titular en la Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Áreas de experticia: Vías, Tránsito, Resistencia de Materiales, Estática.

  • Pilar Naspud Uruchima, Academic Unit of Engineering, Industry, and Construction, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101., Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Cuenca, Ecuador, 010101.

    Ingeniera Civil (2016). Universidad Católica de Cuenca, Ecuador. Mtr. en Ingeniería - Estructuras (2021), Universidad Nacional de Colombia, Colombia. Docente en la Unidad Académica de Ingeniería, Industria y Construcción, Universidad Católica de Cuenca. Áreas de experticia: Estructuras de acero, Estructuras de hormigón, Sismorresistencia.

Referencias

Aguirre, J. (2021). Las fibras de vidrio, acero y polipropileno en forma de hilachas, aplicadas como fibras de refuerzo en la elaboración de morteros de cemento.

ASTM C128. (2023). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate (Vols. CO128-22).

ASTM C188-17. (2023). Standard Test Method for Density of Hydraulic Cement (Vols. CO188-17).

ASTM International. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

ASTM International. (2023). Standard Test Method for Density of Hydraulic Cement.

Bustos García, A. (2018). Morteros con propiedades mejoradas de ductilidad por adición de fibras de vidrio, carbono y basalto. 1–324.

Carrillo, J., Pincheira, J., & Flores, L. E. (2020). Quasi-static cyclic tests of confined masonry walls retrofitted with mortar overlays reinforced with either welded-wire mesh or steel fibers. Journal of Building Engineering, 27(October 2019), 10. https://doi.org/10.1016/j.jobe.2019.100975

Dawood, E. T., & Ramli, M. (2010). Flowable high-strength system as repair material. Structural Concrete, 11(4), 199–209. https://doi.org/10.1680/stco.2010.11.4.199

El Comercio / IG-EPN. (2011). La informalidad en la construcción es el mayor riesgo en un terremoto. Instituto Geofísico – Escuela Politécnica Nacional. https://www.igepn.edu.ec/servicios/noticias/381-la-informalidad-en-la-construcción-es-el-mayor-riesgo-en-un-terremoto

Gonzalez, G. (2015). Estudio de durabilidad de paredes de mamposteria reforzadas con mortero y fibras naturales y artificiales.

Guapán, U. C. N. (UCEM) – P. (n.d.). Ficha Técnica Cemento Hidráulico Guapán Tipo GU.

Guo, Y., Liu, X., Wang, X., Ye, Q., Xiang, K., & Wang, R. (2024). Multiscale Hybrid Steel Fiber Enhances the Impact Resistance and Crack Resistance of Cement-based Materials. Cailiao Daobao Materials Reports, 38(2). https://doi.org/10.11896/cldb.22030271

He, Y. (2023). Characterisation of unidirectional tensile failure performance of steel fibre nano high strength concrete. International Journal of Microstructure and Materials Properties, 16(6), 533–544. https://doi.org/10.1504/IJMMP.2023.134769

Hidayat, B. A., Sabdono, P., Indriyantho, B. R., & Hung, C.-C. (2021a). Compressive and flexural behavior of fiber-reinforced mortar: An experimental study. Aip Conference Proceedings, 2447. https://doi.org/10.1063/5.0072700

International, A. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

International, A. (2016). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.

International, A. (2023). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate.

Kang, J., Shen, D., Shao, H., Huang, Q., & Liu, X. (2024). Experimental Study on Early-Age Cracking Behavior of Hooked-End Steel Fiber-Reinforced Concrete under Different Curing Temperatures. Journal of Materials in Civil Engineering, 36(10). https://doi.org/10.1061/JMCEE7.MTENG-17246

Li, C., Liu, J., Liu, J., Lv, J., & Yang, Z. (2011b). Quantitative evaluation and mechanism of crack resistance of steel fiber reinforced mortar. Kuei Suan Jen Hsueh Pao Journal of the Chinese Ceramic Society, 39(3), 531–536.

Marcalíková, Z., Procházka, L., Pešata, M., Boháčová, J., & Čajka, R. (2019). Comparison of material properties of steel fiber reinforced concrete with two types of steel fiber. IOP Conference Series: Materials Science and Engineering, 549(1). https://doi.org/10.1088/1757-899X/549/1/012039

Nam, J.W.; Kim, S.M.; Park, S.H.; Han, S. H. (2018). Performance of oxygen/argon plasma-treated steel fibres in cementitious composites. Construction and Building Materials, 189, 169–176. https://doi.org/10.1016/j.conbuildmat.2018.08.198

Nian, T., Wang, M., Li, P., Song, J., Ge, J., & Guo, R. (2024). Enhancing low-temperature crack resistance: A method for establishing meso-models and evaluating steel fiber-reinforced hot recycled asphalt mixtures. Construction and Building Materials, 438. https://doi.org/10.1016/j.conbuildmat.2024.137026

Nieto-Cárdenas, X., Takeuchi, C., Carrillo, J., & Cobos, C. (2023). Performance of non-structural masonry retrofitted with welded wire mesh and steel fibers under axial compression load. AIP Conference Proceedings, 2928(1). https://doi.org/10.1063/5.0170782

Pan, H., & Ma, Y. (2017). Impact Resistance of Steel Fiber Reinforced Concrete and Its Mechanism of Crack Resistance and Toughening. Jianzhu Cailiao Xuebao Journal of Building Materials, 20(6), 956–961. https://doi.org/10.3969/j.issn.1007-9629.2017.06.021

Quirós, L. (2018). Estudio del comportamiento mecánico del mortero reforzado con fibra de coco y modificado con óxido de hierro (Vol. 3, Issue 2). Universidad Pontificia Bolivariana.

Samaniego, V. (2020). En la construcción en Ecuador, la informalidad mata. Universidad Del Azuay. https://www.uazuay.edu.ec/noticias/en-la-construccion-en-ecuador-la-informalidad-mata

Sánchez, D. (2000). Tecnología del concreto y del mortero: Vol. Cuarta.

Shen, W., Chen, S., & Zhang, J. (2022). Calculation of Cracks in Partially Steel Fiber Reinforced Concrete Beams with BFRP Bars. Advances in Materials Science and Engineering, 2022. https://doi.org/10.1155/2022/9158379

Shi, K., Zhang, M., Zhang, T., Li, P., Zhu, J., & Li, L. (2021). Seismic performance of steel fiber reinforced high–strength concrete beam–column joints. Materials, 14(12). https://doi.org/10.3390/ma14123235

Vergara-Perucich, F., Fuster-Farfán, X., Rojas Rubio, I., Hidalgo Dattwyller, R., Rincón Quiroz, S., Álvarez, J. C., Alvarado Peterson, V., Meseguer Ruiz, O., & Lizana Vásquez, F. (2022). Vivienda informal y las organizaciones territoriales en América Latina. Revista de Geografía Norte Grande, 14(81), 5–14. https://doi.org/10.4067/s0718-34022022000100005

Younis, K. H., Jirjees, F. F., Yaba, H. K., & Maruf, S. M. (2021). Experimental study on impact resistance of concrete containing steel fibers. In Key Engineering Materials: Vol. 872 KEM. https://doi.org/10.4028/www.scientific.net/KEM.872.1

Zhang, M., Zhang, S., & Jing, J. (2025). Effect of steel fiber content on fatigue performance of high-strength concrete beams. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-96217-x

Publicado

21-07-2025

Cómo citar

Desempeño mecánico de morteros reforzados con fibras de acero. (2025). EASI: Ingeniería Y Ciencias Aplicadas En La Industria, 4(1), 42-51. https://doi.org/10.53591/easi.v4i1.2410