Comparative evaluation of granulometric distribution in grains processed by ball and hammer Mills.

Main Article Content

Stefanie Bonilla Bermeo
Fernando Noblecilla Arévalo
Iván Torres Tapia
Carlos Valdiviezo Rogel

Abstract

The grinding of grains is fundamental in industrial processes, where the resulting particle size distribution directly impacts product quality. This study aimed to compare the granulometric distribution of corn and soybeans processed using a hammer mill, ball mill, and their combination. Samples of corn and soybeans were ground using three configurations: hammer mill, ball mill, and sequential milling with both. The resulting material was sieved to determine weight retained per mesh and calculate characteristic diameters (D10, D50, D90). Additional particle microscopy and ANOVA were performed to evaluate significant differences. The hammer mill produced coarse, heterogeneous distributions, especially for soybeans (D50 ≈ 2.9 mm). The ball mill generated a higher proportion of fine particles in corn (D50 ≈ 1.38 mm) but was ineffective for soybeans (D50 ≈ 3.53 mm). The mill combination achieved the most uniform distribution for both grains (D50 ≈ 1.05–1.25 mm). ANOVA detected no global significant differences, though morphological and distributional disparities were observed in sieve analysis. The combined milling approach optimized granulometric distribution, overcoming the limitations of each individual equipment.

Article Details

Section

Essay Article

How to Cite

[1]
“Comparative evaluation of granulometric distribution in grains processed by ball and hammer Mills”., INQUIDE, vol. 8, no. 01, pp. 102–116, Jan. 2026, doi: 10.53591/4qpz4d10.

References

[1] L. McCabe and J. Smith, Operaciones unitarias en ingeniería química, Séptima, 2007. https://iestpcabana.edu.pe/wp-content/uploads/2021/11/OPERACIONES-UNITARIAS-EN-LA-INGENIERIA-QUIMICA.pdf

[2] M. Roostaei, M. Soroush, V. Arian and A. Ghalambor, "Comparison of Various Particle-Size Distribution-Measurement Methods," SPE Reservoir evaluation & engineering, vol. 23, no. 04, 2020. https://doi.org/10.2118/199335-PA

[3] G. Barbosa-Cánovas, E. Ortega-Rivas and P. Juliano, Food Powders: Physical Properties, Processing, and Functionality, Boston, MA: Springer, 2005. https://doi.org/10.1007/0-387-27613-0_12

[4] A. Gupta and D. Yan, Mineral Processing Design and Operation, Western Australia: Elsevier., 2016. https://toc.library.ethz.ch/objects/pdf03/e01_978-0-444-63589-1_01.pdf

[5] V. B. L.G. Austin, "Experimental methods for grinding studies in laboratory mills," Powder Technology, vol. 5, no. 5, pp. 261-266, 2020. https://doi.org/10.1016/0032-5910(72)80029-9

[6] B. Wills and J. Finch, Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Butterworth-Heinemann, 2016. https://shop.elsevier.com/books/wills-mineral-processing-technology/wills/978-0-08-097053-0

[7] A. International, ASTM E11-17: Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves, 2017. https://standards.globalspec.com/std/3863958/astm-e11-17

[8] F. Etzler and R. Deanne, "Particle size analysis: A comparison of various methods ii," Particle & Particle system characterization, vol. 14, no. 6, pp. 278-282, 2004. https://doi.org/10.1002/ppsc.19970140604

[9] A. Freire and M. A. Lalbay Fuentes, "Implementación de un molino de martillos para el proceso de harina de trigo," Universidad Técnica de Cotopaxi, La Maná, 2022. http://repositorio.utc.edu.ec/handle/27000/8473

[10] F. Lyu, A. van del Poel, W. Hendriks and M. Thomas, "Particle size distribution of hammer-milled maize and soybean meal, its nutrient composition and in vitro digestion characteristics," Animal Feed Science and Technology, vol. 281, p. 115095, 2021. https://doi.org/10.1016/j.anifeedsci.2021.115095

[11] R. Mugabi, Y. B. Byaruhanga, K. Eskridge and C. Welle, "Performance evaluation of a hammer mill during grinding of maize grains," AgricEngInt: CIGR, vol. 21, no. 2, p. 170, 2019. https://cigrjournal.org/index.php/Ejounral/article/download/5257/3011/23827?utm_source=chatgpt.com

[12] P. Pagán, R. Mollehuara-Canales, M. Sinche and J. Martínez, Operaciones Mecánicasde Separación Sólido-Líquido, España: Mc Graw Hill Interamericana, 2023. https://books.google.com.ec/books?hl=es&lr=&id=UYftEAAAQBAJ&oi=fnd&pg=PA2&dq=P.+Mart%C3%ADnez-Pag%C3%A1n,+Tecnolog%C3%ADa+Mineral%C3%Argica,+Cartagena:+Universidad+T%C3%A9cnica+de+Cartagena,+2011.+&ots=XT4vyqxq_5&sig=apv8WuHNxMtMiepueo-IAccQsUU&red

[13] H. G. Merkus, Production, Handling and Characterization of Particulate Materials, The Netherlands: Springer Cham, 2015. https://doi.org/10.1007/978-3-319-20949-4

[14] J. Fu, Z. Xue, Z. Chen and L. Ren, "Experimental study on specific grinding energy and particle size distribution of maize grain, stover and cob.," International Journal of Agricultural and Biological Engineering, vol. 13, no. 4, p. 135–142, 2020. https://doi.org/10.25165/j.ijabe.20201304.5327

[15] G. Niu, T. Zhang, S. Cao, X. Zhang and L. Tao, "Effect of Corn Grinding Methods and Particle Size on the Nutrient Digestibility of Chahua Chickens.," Animals, vol. 13, no. 14, p. 2364, 2023. https://doi.org/10.3390/ani13142364

[16] P. Tomach, "The Influence of the Grinding Media Diameter on Grinding Efficiency in a Vibratory Ball Mill," MDPI, vol. 17, no. 12, p. 2924, 2024. https://doi.org/10.3390/ma17122924

[17] Y. Catillo Álvarez, R. Jiménez, J. Monteagudo, B. Rodríguez and C. Patiño, "Mathematical Model to Improve Energy Efficiency in Hammer Mills and Its Use in the Feed Industry: Analysis and Validation in a Case Study in Cuba," Processes, vol. 13, no. 5, p. 1523., 2025. https://doi.org/10.3390/pr13051523

[18] T. Son, H. B. Trinh, S. Kim, B. Dugarjav and J. Lee, "Estimation of Energy Consumption for Concentrate Process of Tungsten Ore towards the Integration of Renewable Energy Sources in Mongolia," MInerals, vol. 13, no. 8, p. 1059, 2023. https://doi.org/10.3390/min13081059

[19] P. Martínez-Pagán, M. Sinche González and J. Martínez, Operaciones Mecánicas de Separación Sólido- Líquido, Cartagena: Mc Graw Hill, 2023. https://dialnet.unirioja.es/servlet/libro?codigo=990926

[20] W. Gutiérrez, "Ensayo granulométrico de los suelos mediante el método del tamizado," Ciencia Latina Revista Científica Multidisciplinar, vol. 7, no. 2, pp. 6923-69-25, 2023. https://doi.org/10.37811/cl_rcm.v7i2.5834

[21] A. Roca, "Estandarización del Método de tamizado para establecer criterio de aceptación y/o rechazo en las materias primas para una línea de extruidos en la Industria de alimentos," Universidad de Antioquia, Medellín, Colombia, 2021. https://bibliotecadigital.udea.edu.co/server/api/core/bitstreams/beaed1f9-a1d0-49d2-a007-1993bc2de107/content

[22] A. Terence, Powder Sampling and Particle Size Determination, Cartagena: Universidad Politécnica de Cartagena, 2023. https://books.google.com.ec/books?hl=es&lr=&id=5NgqTf9L63kC&oi=fnd&pg=PP1&dq=.+Terence,+Powder+Sampling+and+Particle+Size+Determination,+Cartagena:+Universidad+Polit%C3%A9cnica+de+Cartagena.+(2020).,+2023.&ots=1B0GcyOWcy&sig=QkuduBccOmwYOrSmeJxjTPD1

[23] P. Mort, "Analysis and graphical representation of particle size distributions," Powder Technology,, vol. 420, p. 118100, 2023. https://doi.org/10.1016/j.powtec.2022.118100

[24] G. Lyman, "A Statistical Theory for Sampling of Particulate Materials," Minerals, vol. 13, no. 7, p. 905, 2023. https://doi.org/10.3390/min13070905

[25] H. Jung, Y. Ju Lee and W. B. Yoon, "Effect of Moisture Content on the Grinding Process and Powder Properties in Food: A Review," Processes, vol. 6, no. 6, p. 69, 2018. https://doi.org/10.3390/pr6060069

[26] M. Warechowska, "Some physical properties of cereal grain and energy consumption of grinding," Agricultural Engineering, vol. 1, no. 149, pp. 239-2049, 2014. http://dx.medra.org/10.14654/ir.2014.149.025

[27] H. V. ,. J. Dodds, "Particle shape characterization using morphological descriptors," Particle& Particle systems characterization, vol. 14, no. 6, pp. 272-277. , 2004. https://doi.org/10.1002/ppsc.19970140603.

[28] X. Tian, X. Wang and Z. Wang, "Particle size distribution control during wheat milling: nutritional quality and functional basis of flour products—a comprehensive review," International Journal of Food Science + Technology, vol. 57, no. 12, p. 7556–7572, December 2022. https://doi.org/10.1111/ijfs.16120

[29] N. Mohamad, I. Rodriguez-Donis, A. Cavaco-Soares and P. Evon, "Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review," Processes, vol. 10, no. 5, p. 841, 2022. https://doi.org/10.3390/pr10050841

[30] S. Li, S. Ge, Z. Huang, Q. Wang and H. Zhao, , "Cryogenic grinding technology for traditional Chinese herbal medicine," Cryogenics, vol. 31, no. 2, pp. 136-137, 1991. https://doi.org/10.1016/0011-2275(91)90260-4

[31] N. Yancey, C. T. Wright and T. L. Westover, "Optimizing hammer mill performance through screen selection and hammer design," Biofuels, vol. 4, no. 1, pp. 85-94, 2014. https://doi.org/10.4155/bfs.12.77

[32] W. B. Rowe, "Towards High Productivity in Precision Grinding," MPDI, vol. 3, no. 2, p. 24, 2018. https://doi.org/10.3390/inventions3020024

[33] D. Wang, C. He, H. Tian, F. Liu and T. Zhang, "Parameter optimization and experimental research on the hammer mill," Imateh- Agricultural Enginerering, vol. 62, no. 3, pp. 342-349, 2020. https://doi.org/10.35633/inmateh-62-36

[34] F. Lyu, M. Thomas and W. H. Hendriks, "Particle size distribution of hammer-milled maize and soybean meal, its nutrient composition and in vitro digestion characteristics," Animal Feed Science and Technology, vol. 281, 2021. https://doi.org/10.1016/j.anifeedsci.2021.115095

[35] R. K. Gupta and S. K. Das, "Fracture resistance of sunflower seed and kernel to compressive loading," Journal of Food Engineering, vol. 46, no. 1, pp. 1-8, 2000. https://doi.org/10.1016/S0260-8774(00)00061-3

[36] Y. Haddad, F. Mabille, J. Abecassis and J. Benet, "Rheological properties of wheat endosperm with a view on grinding behaviour," Powder Technology, vol. 105, no. 1-3, pp. 89-94, 1999. https://doi.org/10.1016/S0032-5910(99)00122-9

[37] J. Ke, X. Wang, X. Gao and Y. Zhou, "Ball Milling Improves Physicochemical, Functionality, and Emulsification Characteristics of Insoluble Dietary Fiber from Polygonatum sibiricum," MDPI, vol. 13, no. 15, p. 2323, 2024. https://doi.org/10.3390/foods13152323

[38] Y. Xie, C. Zhang and S. Mei, "Optimisation decision of machining process parameters considering milling energy consumption and specific cutting energy," Alexandria Engineering Journal, vol. 128, pp. 786-795, 2025. https://doi.org/10.1016/j.aej.2025.07.034

[39] L. Feltner, E. Korte, D. F. Bahr and P. Mort, "Particle size and shape analyses for powder bed additive manufacturing," Particuology, vol. 101, pp. 33-42, 2025. https://doi.org/10.1016/j.aej.2025.07.034

[40] Y. Liu, J. Wang, J. C. Barth, K. R. Welsch, V. McIntyre and M. P. Wolcott, "Effects of multi-stage milling method on the energy consumption of comminuting forest residuals," Industrial Crops and Products, vol. 145, 2020. https://doi.org/10.1016/j.indcrop.2019.111955

[41] W. Kruszelnicka, Z. Chen and K. Ambrose, "Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing," Materials, vol. 15, no. 24, p. 8724, 2022. https://doi.org/10.3390/ma15248729

[42] R. Politiek, M. Bruins, J. Keppler and M. Schutyser, "Effect of oil content on pin-milling of soybean," Journal of Food Engineering, vol. 334, p. 111149, 2022. https://doi.org/10.1016/j.jfoodeng.2022.111149