Eficacia comparativa del score FINDRISC y ADA para predecir diabetes mellitus en presencia de factores predisponentes

Autores/as

  • MD. Ivanna Jaramillo Encalada Universidad de Guayaquil

DOI:

https://doi.org/10.53591/10.53591revfcm.v4i1.2157

Palabras clave:

score, FINDRISC, ADA, diabetes mellitus, prediabetes

Resumen

Antecedentes: La diabetes mellitus tipo 2 (DM2) es un trastorno endocrino-metabólico crónico (Gagliardinoa, y otros, 2016), caracterizado por hiperglucemia secundaria a la combinación de disminución de la secreción de insulina y aumento de la resistencia tisular a la acción de la misma.

Objetivo General: Establecer la eficacia del score FINDRISC y ADA para predecir diabetes mellitus en pacientes con factores predisponentes.

Metodología: El trabajo es de enfoque cuantitativo, diseño no experimental, de corte transversal, método observacional y analítico.

Resultados: El score FINDRISC catalogó al 70.3% de los participantes como de alto riesgo de diabetes mellitus, las variables con mayor significancia fueron la edad, antecedentes familiares de primer grado, IMC, CA, HTA y glucosa >100mg/dl. El test ADA aplicado a los mismos individuos catalogó al 64.2% como alto riesgo, todas sus variables con significancia estadística a excepción del antecedente de DG; buena correlación con exámenes de laboratorio.

Conclusión: El test ADA de fácil aplicación además de predecir riesgo de diabetes mellitus 2 también permite establecer el diagnóstico a diferencia del FINDRISC.

Biografía del autor/a

MD. Ivanna Jaramillo Encalada, Universidad de Guayaquil

Médico Tratante Endocrinología-Internista Hospital General Docente de Calderón

Quito - Ecuador

Citas

Acar, B., Ozeke, O., Karakurt, M., Ozen, Y., Ozbay, M., Unal, S., & Aydogdu, S. (2019). Association of Prediabetes With Higher Coronary Atherosclerotic Burden Among Patients With First Diagnosed Acute Coronary Syndrome. . Angiology, 70(2), 174-180.

Acosta et al. (2018). A demostration area for type 2 diabetes prevention in Barranquilla and Juan Mina (Colombia). Medicine, 97:1.

Al-Shudifat, A., Al-Shdaifat, A., Al-Abdouh, A., Aburoman, M., Otoum, S., Sweedan, A., & Johannessen, A. (2017). Diabetes Risk Score in a Young Student Population in Jordan: A Cross-Sectional Study. J Diabetes Res, 8290710.

American Diabetes Association. (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes. Diabetes Care, Volumen 44, Supplement 1.

Andreeva-Gateva, P. A., Konsulova, P., Orbetzova, M., Georgieva-Nikolova, R., Tafradjiiska-Hadjiolova, R., Angelova, V., . . . Simova, I. (2016). Differentiation of obese patients at moderate or higher Findrisc score based on their atherogenic index. Postgraduate Medicine, 790-796.

Antonela B. et al. (2017). Environmental Risk Factors for Type 1 Diabetes Mellitus Development. Exp Clin Endocrinol Diabetes.

Arellano-Campos, O., Gómez-Velasco, V., Bello-Chavolla, O., Cruz-Bautista, I., Melgarejo-Hernandez, M., Muñoz-Hernandez, L., & Guillen, L. e. (2019). Development and validation of a predictive model for incident type 2 diabetes in middle-aged Mexican adultos: the metabolic syndrome cohort. BMC Endocrine Disorders, 19:41.

Barmpari, M., Savvidis, C., Dede, A., Markogiannakis, H., Dikoglou, C., Xekouki, P., . . . Malaktari-Skarantavou, S. (2016). Adrenal malignant melanoma masquerading as a pheochromocytoma in a patient with a history of a multifocal papillary and medullary thyroid carcinoma. Hormones, 283-290.

Bernabe-Ortiz, A., Perel, P., Miranda, J., & Smeeth, L. (2018). Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population. Primary Care Diabetes, 517–525.

Bo A, et al. (2018). Early-onset type 2 diabetes: age gradient in clinical and behavioural risk factors in 5115 persons with newly diagnosed type 2 diabetes--results from the DD2 study. Diabetes Metab Res Rev, 34; e2968.

Breeze, P., Thomas, C., Squires, H., Brennan, A., Greaves, C., Diggle, P., & Chilcott, J. (2017). The impact of Type 2 diabetes prevention programmes based on risk-identification and lifestyle intervention intensity strategies: a cost-effectiveness analysis. Diabet Med, 34(5), 632-640.

Campos, N., & Palomino, G. (2018). FINDRISC, utilidad en el screening de diabetes, personalización y asociaciones. Facultad de Medicina Humana URP, 64-74.

Christine, E., Krabble, M., Schipf, S., Ittermann, T., Dorr, M., & Nauck, M. (2017). Comparison of Traditional Diabetes Risk Scores and HbA1c to Predict Type 2 Diabetes Mellitus in a population based cohort study. Journal of Diabetes and Its Complications, 1-28.

Costa, B., Castell, C., Cos, X., Solé, C., Mestre, S., Canela, M., . . . Lindström, J. (2016). Rationale and design of the DP-TRANSFERS project: diabetes prevention-transferring findings from European research to society in Catalonia. Journal of Translational Medicine, 1-12.

Fizelova, M., Jauhiainen, R., Stancakova, A., Kuusisto, J., & Laakso, M. (2016). Finnish Diabetes Risk Score Is Associated with Impaired Insulin Secretion and Insulin Sensitivity, Drug-Treated Hypertension and Cardiovascular Disease: A Follow-Up Study of the METSIM Cohort. PLoS One, 11(11) e0166584.

Fornos, J., Andrés, F., Andrés, C., Luna, R., García, J., Lorenza, B., . . . García, R. (2016). Detección de personas en riesgo de padecer diabetes en farmacias comunitarias de Pontevedra (DEDIPO). Endocrinología y Nutrición, 387-396.

Gagliardino, J., Elgart, J., Bourgeois, M., Etchegoyen, G., Fantuzzi, G., & Spinedi, E. (2018). Diabetes primary prevention program: New insights from data analysis of recruitment period. Diabetes Metab Res Rev, 34(1).

Gagliardinoa, J. J., Etchegoyenb, G., Bourgeoisb, M., Fantuzzia, G., García, S., Gonzáleza, L., . . . Spinedia, E. (2016). Prevención primaria de diabetes tipo 2 en Argentina. Endocrinología y metabolismo , 135-141.

Gilis-Januszewska, A., Lindstrom, J., Tuomilehto, J., Piwonska-Solska, B., Topor-Madry, R., Szybinski, Z., & Hubalewska-Dydejczyk, A. (2017). Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes in Europe prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. BMC Public Health, 17(1), 198.

Gomez-Arbelaez, D., Alvarado-Jurado, L., Ayala-Castillo, M., Forero-Naranjo, L., Camacho, P., & Lopez-Jaramillo, P. (2015). Evaluation of the Finnish Diabetes Risk Score to predict type 2 diabetes mellitus in a Colombian population: A longitudinal observational study. World Journal of Diabetes, 6(17): 1337-1344.

Haw JS, Galaviz Kl, Straus AN et al. . (2017). Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med, Vol. 12: 1808-1817.

Hellgre, M., Daka, B., & Jansson, P.-A. (2015). Primary care screening for individuals with impaired glucose metabolism with focus on impaired glucose tolerance. Primary Care Diabetes, 261-266.

Hu Sophia, H., Fu Mei, R., Liu, S., Lin, Y., & Chang, W. (2018). CE: Original Research: Physical Activity Among Chinese American Immigrants with Prediabetes or Type 2 Diabetes. Am J Nurs , 118(2), 24-32. doi:10.1097/01.NAJ.0000530221.87469.86.

International Diabetes Federation. (2018). What is diabetes. Obtenido de What is diabetes Web Site: https://www.idf.org/about-diabetes/what-is-diabetes/html

Ishaque, A., Shahzad, F., Muhammad, F., Usman, Y., & Ishaque, Z. (2016). Diabetes risk assessment among squatter settlements in Pakistan: A cross-sectional study. Malays Fam Physician, 11(2-3), 9-15.

Johnson, E., Rhinehart, A., Leal, S., & Shubrook, J. (2019). Standards of Medical Care in Diabetes—2020 Abridged for Primary Care Providers. DOI: 10.2337/cd20-as01: Clinical Diabetes.

Jolle, A., Midthjell, K., Holmen, J., Tuomilehto, J., Carlsen, S., Shaw, J., & Asvold, B. O. (2016). Impact of sex and age on the performance of FINDRISC: the HUNT Study in Norway. BMJ Open Diabetes Res Care, 4(1), e000217.

Kadiki OA, Reddy MRS, Marzouk AA. (1996). Incidence of insulin-dependent diabetes (IDDM) y non-insulin-dependent diabetes (NIDDM) in Benghazi. Diabetes Res Clin Pract, 32; 165-73.

Knowler WC, Barrett-Connor E, Fowler SE et al. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. . N Engl J Med, 346(6):393- 403.

Kraniotoua, C., Karadimaa, V., Bellosa, G., & Tsangarisb, G. T. (2018). Predictive biomarkers for type 2 of diabetes mellitus. Journal of Proteomics, 2-4.

Kulkarni, M., Foraker, R., McNeill, A., Girman, C., Golden, S., Rosamond, W., & Tuomilehto, J. (2017). Evaluation of the modified FINDRISC to identify individuals at high risk for diabetes among middle-aged white and black ARIC study parti. Diabetes Obes Metab, 19(9), 1260-1266.

Lascar, N., Brown, J., Pattison, H., Barnett, A., Bailey, C., & Bellary, S. (2018). Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol., 69-80.

Laurence Katznelson, E. R. (2014). Recuperado el 01 de 06 de 2018, de American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice.: https://www.aace.com/files/acromegaly-guidelines.pdf.

Li G, Zhang P, Wang J et al. (2008). The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. . Lancet, 371(9626):1783-1789.

Liu, H. H., Cao, Y. X., Li, S., Guo, Y. L., Zhu, C. G., Wu, N. Q., & Li, J. J. (2018). Impacts of Prediabetes Mellitus Alone or Plus Hypertension on the Coronary Severity and Cardiovascular Outcomes. Hypertension, 71(6), 1039-1046.

López-Bastida J. et al. (Abril de 2019). Calidad de vida relacionada con la salud en pacientes pediátricos con diabetes mellitus tipo 1 y sus cuidadores en España. Investigación médica actual y opinión.

Lotfaliany, M., Hadaegh, F., Asgari, S., Mansournia, M. A., Azizi, F., Oldenburg, B., & Khalili, D. (2019). Non-invasive Risk Prediction Models in Identifying Undiagnosed Type 2 Diabetes or Predicting Future Incident Cases in the Iranian Population. Arch Iran Med, 22(3), 116-124.

M. Abdul Basith Khan et al. (2020). Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. Journal of Epidemiology and Global Health, Vol 10(1) 107-111.

Mamani-Espinoza, F., Cusipaucar-Uscamalta, G., Scherman-Razzeto, J., & De La Cruz-Vargas, J. (2018). Medicina de estilo de vida y riesgo de desarrollar diabetes mellitus en personal de la Clínica Good Hope, Lima-Perú, 2017. Rev. Fac. Med. Hum., 18(1):16-21.

Manios, Y., Androutsos, O., Lambrinou, C. P., Cardon, G., Lindstrom, J., Annemans, L., & Makrilakis, K. (2018). A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: design and implementation of the Feel4Diabetes-study. Public Health Nutr, 21(17), 3281-3290.

Mansour, M. A. (2020). The Prevalence and Risk Factors of Type 2 Diabetes Mellitus (DMT2) in a Semi-Urban Saudi Population. International Journal Environmental Research and Public-Health, 17,7.

Marto, J. P., Saraiva, M., Ladeira, F., Sa, F., Calado, S., & Viana-Baptista, M. (2018). Prediabetes Is Associated with Unfavorable Outcome in Young Adult Patients with Ischemic Stroke. J Stroke Cerebrovasc Dis, 27(2), 352-356.

Maurice, J., & Godderis, L. (2015). Evaluation of the finnish diabetes risk score (FINDRISC) for diabetes screening in occupational health care. . International Journal of Occupational Medicine and Environmental Health, 587–591.

Mavrogianni, C., Lambrinou, C. P., Androutsos, O., Lindstrom, J., Kivela, J., & Cardon, G. (2019). Evaluation of the Finnish Diabetes Risk Score as a screening tool for undiagnosed type 2 diabetes and dysglycaemia among early middle-aged adults in a large-scale European cohort. The Feel4Diabetes-study. Diabetes Res Clin Pract, 150, 99- 110.

Mbanya, V., Hussain, A., & Pascal, A. (2016). Application and applicability of non-invasive risk models for predicting undiagnosed prevalen diabetes in Africa. Primary Care Diabetes, 318-327.

Milavanovic, S., Silenzi, A., Kheriaoui, F., Ventriglia, G., Boccia, S., & Poscia, A. (2018). Detecting persons al risk for diabetes mellitus type 2 using FINDRISC: results from a community pharmacy-based study. European Journal of Public Health, 1-6.

Moldobaeva, M. S., Vinogradova, A. V., & Esenamanova, M. (2017). Risk of Type 2 Diabetes Mellitus Development in the Native Population of Low- and High-Altitude Regions of Kyrgyzstan: Finnish Diabetes Risc Score Questionnaire Results. High Alt Med Biol, 18(4), 428-435.

Muñoz-González, M., Lima-Martínez, M., Gisuardo Trerotola, A., Paoli, M., Cabrera Rego, J., González, B., . . . Paez, J. (2019). FINDRISC Modified for Latin America as a Screening Tool for Person with Impaired Glucose Metabolism in Ciudad Bolívar, Venezuela. Medical Principles and Practice, DOI: 10.1159/000499468.

MV Informática Nordeste. (2016). ¿Registro Clínico Electrónico o en papel? ¿Cuál la mejor opción para el médico y el paciente? Obtenido de ¿Registro Clínico Electrónico o en papel? ¿Cuál la mejor opción para el médico y el paciente? Web Site: http://www.mv.com.br/es/blog/-registro-clinico-electronico-o-en-papelr--cual-la-mejor-opcion-para-el-medico-y-el-pacienter

Nagy, B., Zsolyom, A., Nagyjanosi, L., Meresz, G., Steiner, T., Papp, E., & Voko, Z. (2016). Cost-effectiveness of a risk-based secondary screening programme of type 2 diabetes. Diabetes Metab Res Rev, 32(7), 710-729.

Nichols J. et al. (2017). A Canadian Cross-Sectional Survey on Psychosocial Supports for People Living Type 1 or 2 Diabetes. Canadian Journal of Diabetes, 1-8. Obtenido de A Canadian Cross-Sectional Survey on Psychosocial Supports for People Living Type 1 or 2 Diabetes.

Nieto-Martinez, R., Gonzalez-Rivas, J., Aschner, P., Barengo, N., & Mechanick, J. (2017). Transculturalizing Diabetes Prevention in Latin America. Ann Glob Health, 83(3- 4), 432-443. doi:10.1016/j.aogh.2017.07.001.

Organización Mundial de la Salud, Unión Internacional de Telecomunicaciones. (2012). Conjunto de herramientas para estretegia de eSalud nacional. Ginebra: OMS.

Paulino, M., Jiang, Y., & al, e. (2017). Evaluating FINDRISC as a screening tool for type 2 diabetes among overweight adults in the PREVIEW. Primary Care Diabetes, 1-9.

Pinchevsky, Y., Butkow, N., Raal, F., Chirwa, T., & Rothberg, A. (2020). Demographic and Clinical Factors Associated with Development of Type 2 Diabetes: A Review of th Literature. International Journal of General Medicine, 13:121-129.

Portilla-Cortez, R. (2017). Factores asociados para el desarrollo de diabetes mellitus tipo 2 y su relación con la condición socio-económica en adultos del barrio Pueblo Unido de la ciudad de Quito de abril a septiembre del 2016. Quito: Universidad Central de Ecuador.

Prabhu, G., Poovitha, M., & Jayasri, S. (2019). To Determine the Usefulness of ADA Risk Score to Predict T2dm/PreDiabetes in South Indian Rural Population. International Journal of Contemporary Medical Research , Vol 6, Issue 8.

Quezada C., Zhunio M. (2015). Diabetes Mellitus tipo 2-enfermería: conocimientos, actitudes y práctica en salud; pacientes ambulatorios-educación. Universidad de Cuenca., Cuenca.

Ramesh Sharma Poudel et al. (Nov de 2017). Assessment of Insulin Injection Practice among Diabetes Patients in a Tertiary Healthcare Centre in Nepal: A Preliminary Study. Journal of Diabetes Research.

Real J. et al. (2017). Diabetes mellitus en pacientes atendidos en el hospital Universitario: Caracterización epidemiológica. Revista científica INSPILIP V. Guayaquil., 1-16.

Reis JP, Loria CM, Sorlie PD, Park Y, Hollenbeck A, Schatzkin A. (2011). Lifestyle factors and risk for new-onset diabetes: a population-based cohort study. Ann Intern Med., 155(5):292.

Salinero-Fort, M. A., Burgos-Lunar, C., Lahoz, C., Mostaza, J. M., Abanades-Herranz, J., Laguna-Cuesta, F., & Group, S. (2016). Performance of the Finnish Diabetes Risk Score and a Simplified Finnish Diabetes Risk Score in a Community-Based, Cross-Sectional Programme for Screening of Undiagnosed Type 2 Diabetes Mellitus and Dysglycaemia in Madrid, Spain: The SPREDIA-2 Study. PLoS One, 11(7), e0158489.

Sanchez, A., Silvestre, C., Campo, N., Grandes, G., & Pre, D. E. (2018). Effective translation of a type-2 diabetes primary prevention programme into routine primary care: The PreDE cluster randomised clinical trial. Diabetes Res Clin Pract, 139, 32-4.

Sánchez-Jiménez B et al. . (2019). Detección de riesgo de diabetes tipo 2 y su relación con alteraciones metabólicas en enfermeras. Rev. Latino-Am. Enfermagem, Vol 27. ISSN 1518-8345.

Scicali, R., Giral, P., Gallo, A., Di Pino, A., Rabuazzo, A. M., Purrello, F., & Rosenbaum, D. (2016). HbA1c increase is associated with higher coronary and peripheral atherosclerotic burden in non diabetic patients. Atherosclerosis, 255, 102-108.

Skyler, J., Bakris, G., Bonifacio, E., Darsow, T., Eckel, R., Groop, L., . . . Ratner, R. (2017). Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes, 241-255.

Srugo, S., De Groh, M., & Jiang, Y. (2019). Evaluating the utility of self-reported questionnaire data to screen for dysglycemia in young adults. Preventive Medicine, 50- 59.

Stiglic, G., Kocbek, P., Cilar, L., Fijacko, N., Stozer, A., Zaletel, J., & Povalej Brzan, P. (2018). Development of a screening tool using electronic health records for undiagnosed Type 2 diabetes mellitus and impaired fasting glucose detection in the Slovenian population. Diabet Med, 35(5), 640-649.

Sun, Y., You, W., Almeida, F., Estabrooks, P., & Davy, B. (2017). The effectiveness and cost of lifestyle interventions including nutrition education for Diabetes prevention. Journal of the academy of nutrition and dietetics, 404-421.

Terrasson J. et al. (2017). Association between quality of life of adolescents with type 1 diabetes and parents`illness perception as evaluated by adolescents. Psychology, Health & Medicine.

Torres, A., & Santistevan, A. (2019). Aplicación del test de FINDRISC para la detección del riesgo de diabetes mellitus tipo II y su relación con el estilo de vida en pacientes adultos en el sector Lucha Obrera, Babahoyo PARA LA DETECCIÓN DEL RIESGO. Bahahoyo: Universidad Técnica de Babahoyo.

Wang, A., Chen, G., Su, Z., Xiaoxue, L., Xiangtong, L., & Haibin, L. (2016). Risk scores for predicting incidence of type 2 diabetes in the Chinese population. Scientific Reports, 1-10.

Wu, H., Yang, S., Huang, Z., He, J., & Wang, X. (2018). Type 2 diabetes mellitus prediction model based on data mining. Informatics in Medicine Unlocked, 1-11.

Yanbo Zhang et al. (2020). Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Diabetologia, 63:21-33.

Zhao, J., Zhu, Y., Hyun, N., Zeng, D., Uppal, K., Tran, V., . . . Howard, B. (2015). Novel metabolic markers for the risk of diabetes development in American Indians. Diabetes Care, 220-227.

Publicado

2023-06-04

Cómo citar

Jaramillo Encalada, M. I. (2023). Eficacia comparativa del score FINDRISC y ADA para predecir diabetes mellitus en presencia de factores predisponentes. REVISTA DE LA FACULTAD DE CIENCIAS MÉDICAS, 4(1), 23–52. https://doi.org/10.53591/10.53591revfcm.v4i1.2157

Número

Sección

Artículos de Investigación