Drag and Lift Forces in Blunt and Aerodynamic Bodies
Drag and Lift Forces in Blunt and Aerodynamic Bodies
DOI:
https://doi.org/10.53591/easi.v4i1.1961Keywords:
DRAG FORCE, BLUNT BODIES, AERODYNAMICS BODIESAbstract
The objective of this study is to analyze the drag and lift forces acting on blunt and streamlined bodies. To achieve this, experiments were conducted in a subsonic wind tunnel using objects of varying geometries, including a small smooth sphere, a large smooth sphere, a rough sphere, a flat disk, and a streamlined body — specifically, a NACA airfoil profile. Airflow within the tunnel was generated using a variable-speed fan, operated at different rotation speeds. Data collection was performed with the aid of specialized software, recording fifty measurements for each case, including drag force, kinematic viscosity, temperature, and airflow velocity. The results were used to construct plots of the drag coefficient versus Reynolds number for the blunt bodies, and the lift coefficient versus Reynolds number for the NACA airfoil, enabling a comparative analysis of aerodynamic behavior across different geometries.
References
Castillo-Medina, A. G., Pineda-Silva, G. V., & Ribadeneira-Ramírez, V. S. (2025). Optimización aerodinámica de autobuses en Ecuador: eficiencia energética y sostenibilidad. Revista Metropolitana de Ciencias Aplicadas, 8(3), 232–240. https://doi.org/10.62452/e1kb1767
Cavcar, M., & Cavcar, A. (2003). Comparison of Generalized Approximate Cruise Range Solutions for Turbojet/Fan Aircraft. Journal of Aircraft, 40(5), 891–895. https://doi.org/10.2514/2.6879
Dick, E. (1992). Introduction to Finite Volume Techniques in Computational Fluid Dynamics. In Computational Fluid Dynamics (pp. 261–288). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-11350-9_11
HUANG, L. (1998). REVERSAL OF THE BERNOULLI EFFECT AND CHANNEL FLUTTER. Journal of Fluids and Structures, 12(2), 131–151. https://doi.org/10.1006/jfls.1997.0131
Hucho, W., & Sovran, G. (1993). Aerodynamics of Road Vehicles. Annual Review of Fluid Mechanics, 25(1), 485–537. https://doi.org/10.1146/annurev.fl.25.010193.002413
Hui, A., Oganesyan, V., & Kim, E.-A. (2021). Beyond Ohm’s law: Bernoulli effect and streaming in electron hydrodynamics. Physical Review B, 103(23), 235152. https://doi.org/10.1103/PhysRevB.103.235152
Ladeesh, V. G., & Manu, R. (2018). Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6), 299. https://doi.org/10.1007/s40430-018-1227-0
Rivera López, J. E., Arciniega Martínez, J. L., Gutiérrez Paredes, G. J., Rodríguez Hibert, C. F., Martínez Cabrera, C. A., & Juárez Navarro, C. A. (2025). Estudio y medición experimental del coeficiente de arrastre del casco de un dron submarino por medio de un túnel de viento. Revista de Ciencias Tecnológicas, 8(1), 1–15. https://doi.org/10.37636/recit.v8n1e389
Schuster, W. R., Pezzin, S. H., & Lafratta, F. H. (2023). Airbrushing of carbon nanotubes on glass fibers for electromagnetic shielding epoxy composites. Polímeros, 33(2). https://doi.org/10.1590/0104-1428.20230001
van den Berg, Jw., Zantema, J. T., & Doornenbal, P. (1957). On the Air Resistance and the Bernoulli Effect of the Human Larynx. The Journal of the Acoustical Society of America, 29(5), 626–631. https://doi.org/10.1121/1.1908987
Villa García, L. M. (2017). Comparación entre la estimación de parámetros modales de estructuras a partir de análisis modal clásico y operacional con modificaciones de masa. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 33(3–4), 188–196. https://doi.org/10.1016/j.rimni.2016.04.003
Wood, R. (2003, January 6). Aerodynamic Drag and Drag Reduction. 41st Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2003-209
Downloads
Published
Issue
Section
License
Copyright (c) 2025 MILTON FLORES, Eduardo Baidal Bustamante, RICHARD VARAS

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Contributions published in the EASI journal follow the open access license CC BY-NC-ND 4.0 (Creative Commons Attribution-NonCommercial-NoDerivs 4.0). This license empowers you as an author and ensures wide dissemination of your research while still protecting your rights.
For authors:
- Authors retain copyrights without restrictions according to CC BY-NC-ND 4.0 license.
- The journal obtains a license to publish the first original manuscript.
For readers/users:
Free access and distribution: Anyone can access, download, copy, print, and share the published article freely according to the license CC BY-NC-ND 4.0 terms.
Attribution required: If any third party use the published material, they must give credit to the creator by providing the name, article title, and journal name, ensuring the intellectual property of the author(s), and helping to build the scholarly reputation.
Non-commercial use: only noncommercial use of the published work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation by any third party.
No modifications allowed: The content of the published article cannot be changed, remixed, or rebuilt upon the author’s work. This ensures the integrity and accuracy of the research findings.








