Drag and Lift Forces in Blunt and Aerodynamic Bodies

Drag and Lift Forces in Blunt and Aerodynamic Bodies

Authors

DOI:

https://doi.org/10.53591/easi.v4i1.1961

Keywords:

DRAG FORCE, BLUNT BODIES, AERODYNAMICS BODIES

Abstract

The objective of this study is to analyze the drag and lift forces acting on blunt and streamlined bodies. To achieve this, experiments were conducted in a subsonic wind tunnel using objects of varying geometries, including a small smooth sphere, a large smooth sphere, a rough sphere, a flat disk, and a streamlined body — specifically, a NACA airfoil profile. Airflow within the tunnel was generated using a variable-speed fan, operated at different rotation speeds. Data collection was performed with the aid of specialized software, recording fifty measurements for each case, including drag force, kinematic viscosity, temperature, and airflow velocity. The results were used to construct plots of the drag coefficient versus Reynolds number for the blunt bodies, and the lift coefficient versus Reynolds number for the NACA airfoil, enabling a comparative analysis of aerodynamic behavior across different geometries.

Author Biographies

  • Milton Flores Zhamungui, Faculty of Industrial Engineering, Universidad de Guayaquil, Guayaquil, Ecuador, 090112., Facultad de Ingeniería Industrial, Universidad de Guayaquil, Guayaquil, Ecuador, 090112.

    Telecommunications Engineer (1980). Escuela Superior Politécnica del Litoral (2011), Ecuador. Adjunct Professor at the Faculty of Industrial Engineering, Universidad de Guayaquil. Areas of expertise: electrical networks, telecommunications, physics, calculus.

  • Eduardo Baidal Bustamante, Faculty of Industrial Engineering, Universidad de Guayaquil, Guayaquil, Ecuador, 090112., Facultad de Ingeniería Industrial, Universidad de Guayaquil, Guayaquil, Ecuador, 090112.

    Industrial Engineer (1987). Faculty of Industrial Engineering, Universidad de Guayaquil (2010), Ecuador. Adjunct Professor at the Faculty of Industrial Engineering, University of Guayaquil. Areas of expertise: Physics, Maintenance Management, and Plant Design.

  • Richard Varas Flores, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, 090112., Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, 090112.

    Mechanical Engineer (1994). Escuela Superior Politécnica del Litoral (2021), Ecuador. Areas of expertise: Mechanical Design.

References

Castillo-Medina, A. G., Pineda-Silva, G. V., & Ribadeneira-Ramírez, V. S. (2025). Optimización aerodinámica de autobuses en Ecuador: eficiencia energética y sostenibilidad. Revista Metropolitana de Ciencias Aplicadas, 8(3), 232–240. https://doi.org/10.62452/e1kb1767

Cavcar, M., & Cavcar, A. (2003). Comparison of Generalized Approximate Cruise Range Solutions for Turbojet/Fan Aircraft. Journal of Aircraft, 40(5), 891–895. https://doi.org/10.2514/2.6879

Dick, E. (1992). Introduction to Finite Volume Techniques in Computational Fluid Dynamics. In Computational Fluid Dynamics (pp. 261–288). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-11350-9_11

HUANG, L. (1998). REVERSAL OF THE BERNOULLI EFFECT AND CHANNEL FLUTTER. Journal of Fluids and Structures, 12(2), 131–151. https://doi.org/10.1006/jfls.1997.0131

Hucho, W., & Sovran, G. (1993). Aerodynamics of Road Vehicles. Annual Review of Fluid Mechanics, 25(1), 485–537. https://doi.org/10.1146/annurev.fl.25.010193.002413

Hui, A., Oganesyan, V., & Kim, E.-A. (2021). Beyond Ohm’s law: Bernoulli effect and streaming in electron hydrodynamics. Physical Review B, 103(23), 235152. https://doi.org/10.1103/PhysRevB.103.235152

Ladeesh, V. G., & Manu, R. (2018). Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6), 299. https://doi.org/10.1007/s40430-018-1227-0

Rivera López, J. E., Arciniega Martínez, J. L., Gutiérrez Paredes, G. J., Rodríguez Hibert, C. F., Martínez Cabrera, C. A., & Juárez Navarro, C. A. (2025). Estudio y medición experimental del coeficiente de arrastre del casco de un dron submarino por medio de un túnel de viento. Revista de Ciencias Tecnológicas, 8(1), 1–15. https://doi.org/10.37636/recit.v8n1e389

Schuster, W. R., Pezzin, S. H., & Lafratta, F. H. (2023). Airbrushing of carbon nanotubes on glass fibers for electromagnetic shielding epoxy composites. Polímeros, 33(2). https://doi.org/10.1590/0104-1428.20230001

van den Berg, Jw., Zantema, J. T., & Doornenbal, P. (1957). On the Air Resistance and the Bernoulli Effect of the Human Larynx. The Journal of the Acoustical Society of America, 29(5), 626–631. https://doi.org/10.1121/1.1908987

Villa García, L. M. (2017). Comparación entre la estimación de parámetros modales de estructuras a partir de análisis modal clásico y operacional con modificaciones de masa. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 33(3–4), 188–196. https://doi.org/10.1016/j.rimni.2016.04.003

Wood, R. (2003, January 6). Aerodynamic Drag and Drag Reduction. 41st Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2003-209

Published

2025-07-21

How to Cite

Drag and Lift Forces in Blunt and Aerodynamic Bodies: Drag and Lift Forces in Blunt and Aerodynamic Bodies. (2025). EASI: Engineering and Applied Sciences in Industry, 4(1), 31-41. https://doi.org/10.53591/easi.v4i1.1961