The Analysis of scientific papers related to intelligent forklifts

Authors

DOI:

https://doi.org/10.53591/easi.v4i2/2602

Keywords:

Artificial intelligence, Documental analysis, Documents,, Intelligent forklifts, Inventories

Abstract

This document shows an analysis of documents related to intelligent forklifts, which seeks to identify the advances in the field and recognize the existing knowledge gap in the area to support the future design of a forklift that, based on artificial intelligence algorithms, can operate with certain autonomy and be called an intelligent forklift. The PRISMA 2020 guide is used for the search, selection, evaluation and summary of findings of the papers. We start with the search in the Scopus database, defining inclusion criteria to limit the study. The documents are characterized, then an analysis of their bibliographic networks is made using Wosviewer, after which their summaries are studied with Voyant, to succinctly present the main findings. It is concluded that it is important to promote collaborative work among authors, organizations and countries, to complement the advances in forklifts, their routing and movement planning using artificial intelligence tools, such as convolutional or transformer type networks.

Author Biographies

  • Anny Espitia-Cubillos, Military University Nueva Granada

    Performed her undergraduate studies in Industrial Engineering in the Universidad Militar Nueva Granada in 2002 and M.Sc. in Industrial Engineering from the Universidad de Los Andes in 2006. She is an Associate Professor on Industrial Engineering Program at Universidad Militar Nueva Granada, Bogotá, Colombia.

  • Robinson Jiménez-Moreno, Military University Nueva Granada

    Is an Electronic Engineer graduated from Universidad Distrital Francisco José de Caldas in 2002. He received a M.Sc. in Engineering from Universidad Nacional de Colombia in 2012 and Ph.D. in Engineering at Universidad Distrital Francisco José de Caldas in 2018. His current working as associate professor of Universidad Militar Nueva Granada and research focuses on the use of convolutional neural networks for object recognition and image processing for robotic applications such as human-machine interaction. 

  • Esperanza Rodríguez-Carmona, Military University Nueva Granada

    Performed her undergraduate studies in Mechanical Engineering (1997) from the Universidad Tecnológica de Pereira (UTP) and Master's degree in university teaching from the Universidad de La Salle, Bogotá, Colombia. She is an Associate Professor on Industrial Engineering program at Universidad Militar Nueva Granada, Bogotá, Colombia.

References

Aksjonov, A., Gordienko, Y., Paramonov, S., Kotenko, I., & Drobintsev, P. (2019). Speed control of electric vehicle propulsion with autotuning at changeable driving modes and road conditions. 2019 IEEE International Conference on Mechatronics (ICM) (pp. 584–589). Ilmenau, Germany. https://doi.org/10.1109/ICMECH.2019.8722909

Arfianto, A., Wahyudi, S., Hidayat, T., & Ismail, M. (2019). Unmanned vehicles use received signal strength indicator (RSSI) in instant beverage industry. 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA) (pp. 340–343). Batu, Indonesia. https://doi.org/10.1109/ICAMIMIA47173.2019.9223401

Ballamajalu, R., Kumar, P., & Ramesh, C. (2020). Turn and orientation sensitive A* for autonomous vehicles in intelligent material handling systems. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) (pp. 606–611). Kong, China. https://doi.org/10.1109/CASE48305.2020.9216869

Cai, W., Li, J., Liu, Y., Zhang, H., & Zhao, Y. (2022). Multi-feature fusion-guided multiscale bidirectional attention networks for logistics pallet segmentation. CMES – Computer Modeling in Engineering and Sciences, 131(3), 1539–1555. https://doi.org/10.32604/cmes.2022.019785

Carmosino, G., Rossi, F., Bianchi, L., & Marino, S. (2021). Digital technologies in expanding the boundaries through immersive spaces: Case studies in vessel and yacht design. In T. Ahram, R. Taiar, K. Langlois, & A. Choplin (Eds.), Human interaction, emerging technologies and future applications III. IHIET 2020. Advances in intelligent systems and computing (Vol. 1253, pp. 290–296). Springer. https://doi.org/10.1007/978-3-030-55307-4_32

Chew, J., Lee, K., Wong, S., & Tan, H. (2019). Development of a virtual environment to realize human-machine interaction of forklift operation. 2019 7th International Conference on Robot Intelligence Technology and Applications (RiTA) (pp. 112–118). Daejeon, South Korea. https://doi.org/10.1109/RITAPP.2019.8932837

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR 2021). Vienna, Austria. https://doi.org/10.48550/arXiv.2010.11929

Espitia-Cubillos, A. A., Vargas Duanca, L. M., & Jiménez-Moreno, R. (2025). Industry 5.0 oriented rotating forklift prototype for inventory handling. 2025 23rd LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI): Engineering, Artificial Intelligence, and Sustainable Technologies in Service of Society (p. 520). Mexico City, Mexico. https://doi.org/10.18687/LACCEI2025.1.1.520

Fernandez-Albujar, C., La Rosa-Arízaga, L., & Flores-Perez, A. (2022). Production management model based on lean manufacturing and BPM tools to increase profitability in SMEs in the plastic sector. 2022 8th International Engineering, Sciences and Technology Conference (IESTEC) (pp. 61–67). Panama: IEEE. https://doi.org/10.1109/IESTEC54539.2022.00018

García Amen, F. (2022). Cuando los robots hereden la Tierra. Una hipótesis hipersticional en torno a la cuarta revolución industrial fundada sobre el pasado y el presente de la convergencia físico–digital. Arquisur Revista, 12(21), 34–47. https://doi.org/10.14409/ar.v12i22.11186

Gopireddy, S. R. (2024). Cyber-physical cloud security: Protecting cloud-connected smart infrastructure. European Journal of Advances in Engineering and Technology, 11(2), 64–68.

Ho, C., & Ulfitria, R. (2022). Automatic anti-lock brake system for anti-rollover control of autonomous heavy-duty truck. 27th International Conference on Artificial Life and Robotics (ICAROB 2022) (pp. 635–640). Kunming, China. https://doi.org/10.1117/12.2653700

Li, X., Xu, Z., Peng, H., Wang, H., & Huang, Q. (2022). Box straight line detection method based on two PCA and DBSCAN. 2022 4th International Conference on Intelligent Information Processing (IIP) (pp. 147–154). Guangzhou, China. https://doi.org/10.1109/IIP57348.2022.00037

Limeira, M., Silva, T., Costa, R., & Pereira, J. (2019). WsBot: A tiny, low-cost swarm robot for experimentation on industry 4.0. 2019 Latin American Robotics Symposium, 2019 Brazilian Symposium on Robotics and 2019 Workshop on Robotics in Education (LARS/SBR/WRE) (pp. 293–298). Rio Grande, Brazil. https://doi.org/10.1109/LARS-SBR-WRE48964.2019.00058

Liu, Y., Liang, G., & Pan, Y. (2022). The internet of things new intelligent automatic parking system. 2022 2nd International Conference on Information Technology and Intelligent Control (CITIC) (p. 12346). Kunming, China. https://doi.org/10.1117/12.2653700

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. https://doi.org/10.1016/j.recesp.2021.06.016

Qureshi, A., Khan, M., Ali, Z., & Raza, S. (2024). Semantic segmentation and YOLO detector over aerial vehicle images. Computers, Materials & Continua, 80(2), 3315–3332. https://doi.org/10.32604/cmc.2024.052582

Ren, J., Zhang, Y., Li, H., & Wu, Q. (2022). Deep learning-based intelligent forklift cargo accurate transfer system. Sensors, 22(21), 8437. https://doi.org/10.3390/s22218437

Ruesgas, M. (2019). Tendencias e innovación en la supply chain: Convergencia del mundo físico y digital. Manutención y Almacenaje: Logística, Distribución, Transporte, 539, 18–19.

Schreck, S., Müller, P., Hoffmann, T., & Klein, R. (2023). In the context of autonomous forklifts, ensuring non-collision during travel, pick, and place operations is crucial. To accomplish this, the forklift must be able to detect and locate areas of free space and potential obstacles in its environment. 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA) (pp. 171–176). Kristiansand, Norway. https://doi.org/10.1109/ICCMA59762.2023.10374705

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jegou, H. (2022). Three things everyone should know about vision transformers. European Conference on Computer Vision (ECCV 2022) (Vol. 13684, pp. 497–515). Milan, Italy. https://doi.org/10.1007/978-3-031-20053-3_29

Wu, B., Chen, Y., Li, X., & Zhou, H. (2022). Dynamic path planning for forklift AGV based on smoothing A* and improved DWA hybrid algorithm. Sensors, 22(18), 7079. https://doi.org/10.3390/s22187079

Zhao, K., Liu, H., Wang, J., & Sun, Y. (2020). Joint RFID and UWB technologies in intelligent warehousing management system. IEEE Internet of Things Journal, 7(2), 11640–11655. https://doi.org/10.1109/JIOT.2020.2998484

Published

2025-11-04

How to Cite

The Analysis of scientific papers related to intelligent forklifts. (2025). EASI: Engineering and Applied Sciences in Industry, 4(2), 9-17. https://doi.org/10.53591/easi.v4i2/2602