Design and implementation of a mechatronic system for monitoring worker exposure in cold storage facilities

Autores/as

  • Marcelo Fajardo-Pruna Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112 https://orcid.org/0000-0002-5348-4032
  • Luis Lopez-Estrada Department of Mechanical Engineering. Universidad Politécnica de Madrid. Madrid, Spain, 28006. https://orcid.org/0000-0003-4251-9305
  • Jhon Barbery Faculty of Mechanical Engineering and Production Sciences, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador, 09-01-5863.
  • Guillermo Medina Faculty of Mechanical Engineering and Production Sciences, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador, 09-01-5863.

DOI:

https://doi.org/10.53591/easi.v3i1.0302

Palabras clave:

Mechatronic System, Occupational Safety, Time Control Device, Cold Storage Monitoring

Resumen

In response to the increasing need for enhanced occupational safety in cold storage facilities, this study presents the design and validation of a mechatronic time control device specifically developed for monitoring the exposure times of warehouse operators in a multinational company. Over the past two decades, Ecuador has significantly increased regulations to safeguard worker health and safety. In compliance with these regulations, this research addresses the challenges operators face when exposed to sub-zero temperatures during their work shifts. The proposed system integrates mechanical, electronic, and control components to systematically track and manage operators' time within cold rooms, ensuring compliance with predefined safety thresholds. A NodeMCU microcontroller, digital temperature sensors, and a robust communication interface form the device's core. This device records entry and exit times, monitors ambient conditions, and triggers alerts when exposure limits are approached. Extensive validation was conducted using a 3D-printed resin prototype, demonstrating the device's capability to function effectively in harsh environments. The system's efficacy was evaluated through real-world testing, where operators used the prototype during their shifts. Data collected confirmed the device's reliability in tracking exposure times and enhancing worker safety.

Biografía del autor/a

Marcelo Fajardo-Pruna, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112

Ph.D. en Ingeniería Mecánica (Universidad Politécnica de Madrid, España, 2018). Ingeniero Mecánico (Escuela Politécnica Nacional, Ecuador, 2011). Experto en inteligencia artificial, redes neuronales, visión artificial, robótica colaborativa y gestión del ciclo de vida del producto.

Luis Lopez-Estrada, Department of Mechanical Engineering. Universidad Politécnica de Madrid. Madrid, Spain, 28006.

Ingeniero Mecatrónico (2005). Tecnológico de Monterrey, México. Ph.D. en Ingeniería Mecánica (2019), Universidad Politécnica de Madrid, España. Investigador en el Departamento de Ingeniería Mecánica, Universidad Politécnica de Madrid. Áreas de experticia: Industria 4.0, Micromecanizado, Fabricación Avanzada y Visión Artificial.

Jhon Barbery, Faculty of Mechanical Engineering and Production Sciences, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador, 09-01-5863.

Ingeniero mecatrónico (Escuela Superior Politécnica del Litoral. Ecuador, 2022)

Guillermo Medina, Faculty of Mechanical Engineering and Production Sciences, Escuela Superior Politécnica del Litoral. Guayaquil, Ecuador, 09-01-5863.

Ingeniero Mecatrónico (Escuela Superior Politécnica del Litoral. Ecuador, 2022)

Citas

BSIGroup. (2024). Getting started with BS OHSAS 18001 Occupational Health and Safety Management. https://www.bsigroup.com/en-CA/BS-OHSAS-18001-Occupational-Health-and-Safety/Introduction-to-BS-OHSAS-18001/.

Cámara, J. (2016). Desarrollo de interfaces para Arduino en Visual C++. https://riubu.ubu.es/bitstream/handle/10259/3982/Desarrollo%20de%20interfaces%20para%20Arduino%20UNO%20en%20visual%20C++.pdf

Creality (2024). Creality3D ld-006h resin 3D printer. Creality 3D. https://www.creality.com/products/creality-ld-006-resin-3d-printer

Grupo Kalise Menorquina. (2018). La Cadena de Frío en los helados. https://xdoc.mx/documents/la-cadena-de-frio-en-los-helados-5f402de7ec675#:~:text=LA%20CADENA%20DE%20FR%C3%8DO%20EN,esta%20forma%2C%20su%20buen%20estado

Lakatos, D. (2020). Guía de impresión 3D: Tipos de impresoras 3D, materiales y aplicaciones. Formlabs. https://formlabs.com/latam/3d-printers/.

Ministerio del Trabajo. (2024). https://www.trabajo.gob.ec/direccion-de-seguridad-en-el-trabajo-y-prevencion-de-riesgos-laborales/.

Netwoods, G. N. W. (2024). Control de entradas y salidas de trabajadores. https://www.visitentry.com/es-EC/asistencia-empleados

OSHA. (2023). Department of Labor Logo United States department of Labor. Occupational Safety and Health Administration. https://www.osha.gov/winter-weather/cold-stress

Roobuck (2024). Mine IoT Solutions and Devices. Roobuck. https://roobuck.co/roobuck-solutions-wireless-tracking-and-signalling-solution-for-underground-hardrock-mines/

Chen, J., Fu, Y., Lu, W., & Pan, Y. (2023). Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. Journal of Environmental Management, 348, 119341. https://doi.org/10.1016/j.jenvman.2023.119341

Díez, C. (2020). Un Sistema Inteligente de Monitorización reduce Los Accidentes laborales y Mejora La Eficiencia en la construcción. Plataforma enerTIC.org. https://enertic.org/un-sistema-inteligente-de-monitorizacion-reduce-los-accidentes-laborales-y-mejora-la-eficiencia-en-la-construccion/.

Ding, J., Weng, J., & Chou, C. (2023). Assessment of key risk factors in the cold chain logistics operations of container carriers using best worst method. International Journal of Refrigeration, 153, 116–126. https://doi.org/10.1016/j.ijrefrig.2023.06.013

Espresssif Systems IOT Team. (2022a). 0A-Esp8266 datasheet en v4.3 - components101. https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf

Espresssif Systems IOT Team (2022b). SSD1306 - Datasheet Hub. https://datasheethub.com/wp-content/uploads/2022/08/SSD1306.pdf

IESS. (2020). Boletín Estadístico del IESS Año 2020. Instituto Ecuatoriano de Seguridad Social, IESS. Dirección Actuarial, de Investigación y Estadística. https://www.iess.gob.ec/documents/10162/8421754/10_BOLETIN_ESTADISTICO_25_2020?version=1.2

Pistolesi, F., Baldassini, M., & Lazzerini, B. (2024). A human-centric system combining smartwatch and LiDAR data to assess the risk of musculoskeletal disorders and improve ergonomics of Industry 5.0 manufacturing workers. Computers in Industry, 155, 104042. https://doi.org/10.1016/j.compind.2023.104042

Romo, S. (2014). El frío, un riesgo laboral. Revista Cero Grados. https://0grados.com/el-frio-un-riesgo-laboral/#:~:text=La%20actividad%20en%20lugares%20fr%C3%ADos,con%20la%20vida%20del%20trabajador.

Son, H., & Kim, C. (2021). Integrated worker detection and tracking for the safe operation of construction machinery. Automation in Construction, 126, 103670. https://doi.org/10.1016/j.autcon.2021.103670

Toro, J. L., Comas R., Castro F. (2020). Normativa en seguridad y salud ocupacional en el Ecuador. Universidad y Sociedad, 12 [S(1)], 497-503. https://rus.ucf.edu.cu/index.php/rus/article/view/1887

Vasco, P. C., Calderón, D. Á., Salazar, P. M., & Garcia, A. G. (2018). Occupational safety and health in Ecuador. INNOVA Research Journal, 2(12), 139–152. https://doi.org/10.33890/innova.v2.n12.2017.322

Walters, D. (2024). Professions, power and paradox in occupational safety and health in the 21st century. Safety Science, 174, 106446. https://doi.org/10.1016/j.ssci.2024.106446

Publicado

01-08-2024

Cómo citar

Fajardo-Pruna, M., Lopez-Estrada, L., Barbery, J., & Medina, G. (2024). Design and implementation of a mechatronic system for monitoring worker exposure in cold storage facilities. EASI: Ingeniería Y Ciencias Aplicadas En La Industria, 3(1), 40–51. https://doi.org/10.53591/easi.v3i1.0302