Model, based on computing with words and competitive fuzzy cognitive maps, for the representation of the interrelationships between symptoms, signs and cardiovascular diseases
DOI:
https://doi.org/10.53591/iti.v6i6.1204Keywords:
computing with words, fuzzy cognitive maps, granularity, medical diagnosisAbstract
Fuzzy cognitive maps have received increasing attention for the representation of the causal knowledge, due to its especial use fulness in medical diagnosis . This paper proposes a representation of interrelations among symptoms, signs and cardiac diseases based on competitive fuzzy cognitive maps, using the paradigm of Computing with Words, in order to provide causal models easy to understand. To this end, the use of linguistic representation model based on linguistic 2-tuple in the competitive fuzzy cognitive maps is proposed, which allowing to perform the Computing with Words Processes without losing information. As a result of this paper, a new model of fuzzy cognitive maps is obtained, which is called Linguistic Competitive Fuzzy Cognitive Map (LCFCM). The main advantage of the model proposed for medical diagnosis, based on fuzzy cognitive maps, is that it allows increasing the interpretability of the causal models, being this fact useful in medical diagnosis. Last, the paper presents a case study of the model proposed and a static analysis of this model to determine symptoms and s ig ns more important in the map obtained, as well as recommendations for future works.
References
Kosko B. Fuzzy cognitive maps. lnternational Journal of Man-Machine Studies. 1986 ;24(1):65-75.
Leyva-Vázquez M, Karina Pérez-Teruel, Febles-Estrada A, Gulín-González J. Técnicas para la representación del conocimiento causal. Un estudio de caso en Informática Médica. ACIMED. 2013 ;24(1).
Axelrod RM. Structure of decision: The cognitive maps of political elites: Princeton University Press Princeton, NJ; 1976.
Zadeh LA. Fuzzy sets. lnformation and Control. 1965;8(3):338-53.
Herrera F. An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. lnformation Sciences. 2012;207:1-18.
Herrero JMJ. Una aproximación multimodal al diagnostico temporal mediante razonamiento basado en casos y razonamiento basado en modelos. Aplicaciones en la medicina: Universidad de Murcia; 2007.
Georgopoulos VC, Malandraki GA, Stylios CD. A fuzzy cognitive map approach to differential diagnosis of specific language impairment. Artificial intelligence in Medicine. 2003;29(3):261- 78.
lnnocent PR, John RJ. Computer aided fuzzy medical diagnosis. lnformation Sciences. 2004;162(2):81-104.
Ping CW. A Methodology for Constructing Causal Knowledge Model from Fuzzy Cognitive Map to Bayesian BeliefNetwork [ PhD Thesis]: Chonnam National University. Doctoral Thesis; 2009.
Papageorgiou El. Leaming Algorithms for Fuzzy Cognitive Maps---A Review Study. Systems, Man, and Cybemetics, Part C: Applications and Reviews, IEEE Transactions on. 2011;PP(99):1-14.
Kosko B. Fuzzy engineering. Prentice- Hall, Inc.; 1997.
Zhi-Qiang UU. Causation, bayesian networks, and cognitive maps. ACTA AUTOMATICA SINICA. 2001;27(4):552-66.
Salmeron JL. Modelling grey uncertainty with Fuzzy Grey Cognitive Maps. Expert Systems with Applications. 2010;37(12):7581-8.
Papageorgiou E, Stylios C, Groumpos P. lntroducing lnterval Analysis in Fuzzy Cognitive Map Framework Advances in Artificial Intell igence. In: Antoniou G, Potamias G, Spyropoulos C, Plexousakis D, editors. Lecture Notes in Computer Science. 3955: Springer Berlín / Heidelberg; 2006. p. 571-5.
lakovidis DK, Papageorgiou E. lntuitionistic Fuzzy Cognitive Maps for Medica! Decision Making. lnformation Technology in Bio med ic ine, IEEE Transactions on. 2011 ; 15(1):100- 7.
Stylios, Georgopoulos VC, Malandraki GA, Chouliara S. Fuzzy cognitive map architectures for medical decision support systems. Applied Soft Computing. 2008;8(3):1243-51.
Iglesias A, Castillo MDd, Serrano JI, Oliva J. Connectionist Models of Decision Making. In: Jao CS, editor. Decision Support Systems: INTECH; 2010.
Stylios CS, Georgopoulos VC, editors. Fuzzy Cognitive Maps for Medical Decision Support; A paradigm from obstetrics. Engineering in Medicine and Biology Society (EMBC), 2010 Annual lntemational Conference of the IEEE; 2010 Aug. 31 2010-Sept. 4 2010.
Leyva-Vázquez M. Modelo de Ayuda a la Toma de Decisiones Basado en Mapas Cognitivos Difusos. La Habana: UCI. Doctor en Ciencias Técnicas; 2013.
Yusuf S, Reddy S, Óunpuu S, Anand S. Global burden of cardiovascular diseases part 1: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001; 104(22):2746-53.
Terucl KP, Vázquez ML, Estévez ME. Computación con palabras en la toma decisiones mediante mapas cognitivos difusos. 2014. 2014;8(2).
Herrera F, Alonso S, Chiclana F, Herrera-Viedma E. Computing with words in decision making: foundations, trends and prospects. Fuzzy Optimization and Decision Making. 2009;8(4):337-64.
Pércz-Tcrucl K, Leyva-Vázquez M, Espinilla M, Estrada-Sentí V. Computación con palabras en la toma de decisiones mediante mapas cognitivos difusos. Revista Cubana de Ciencias Informáticas. 2014;8(2):19-34.
Espinilla M. Nuevos Modelos de Evaluación con Información Lingüistica. SCHOOL= Universidad de Jaén, YEAR= 2009. 2009.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Salah Hasan Saleh, Maikel Yelandi Leyva Vázquez, Juan Pedro Febles Rodríguez, Fawaz Saleem Mohsen

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

