Reconocimiento de emociones faciales mediante técnicas de aprendizaje profundo aplicado a procesos administrativos de la Universidad Técnica de Manabí

Facial emotion recognition using deep learning techniques applied to administrative processes at the Technical University of Manabí

Autores/as

DOI:

https://doi.org/10.53591/iti.v17i24.2665

Palabras clave:

Aprendizaje profundo, MobileNetV1, procesos administrativos, reconocimiento de emociones faciales, redes neuronales convolucionales

Resumen

Contexto: Las instituciones de educación superior promueven el diseño de soluciones automatizadas para optimizar procesos y servicios; en este estudio se diseñó un prototipo de reconocimiento de emociones faciales aplicado a procesos administrativos de la Universidad Técnica de Manabí (UTM). Método: Se utilizaron datos propios en una red neuronal convolucional (CNN) personalizada, optimizada para imágenes en escala de grises de 48×48 píxeles, y se comparó con la arquitectura preentrenada MobileNetV1. El entrenamiento siguió un enfoque reproducible mediante un flujo de preprocesamiento, aumento y validación de seis clases de emociones (felicidad, enojo, miedo, neutral, tristeza y disgusto). Resultados: La CNN personalizada alcanzó el mejor rendimiento con una exactitud de 0,88 frente a 0,80 de MobileNetV1. El mejor modelo fue integrado en un prototipo con pruebas en escenarios de matrícula, donde la emoción neutral fue la de mayor frecuencia y confianza. Conclusiones: En este contexto, las redes neuronales convolucionales son ratificadas para el reconocimiento de imágenes con enfoque en la gestión de la atención a los usuarios en servicios públicos. En trabajos futuros se pueden mejorar la validación estratificada, la comparación con conjuntos de datos de referencia, así como el establecimiento de criterios éticos para fortalecer la generalización y el uso responsable de datos sensibles.

Referencias

Agung, E. S., Rifai, A. P. & Wijayanto, T. (2024). Image-based facial emotion recognition using convolutional neural network on emognition dataset. Scientific Reports, 14(1), 1–22. https://doi.org/10.1038/S41598-024-65276-X;SUBJMETA=117,258,2811,477,631,639,705;KWRD=COMPUTER+SCIENCE,HUMAN+BEHAVIOUR,INFORMATION+TECHNOLOGY

Akhand, M. A. H., Roy, S., Siddique, N., Kamal, M. A. S. & Shimamura, T. (2021). Facial Emotion Recognition Using Transfer Learning in the Deep CNN. Electronics 2021, Vol. 10, Page 1036, 10(9), 1036. https://doi.org/10.3390/ELECTRONICS10091036

Alruwais, N. & Zakariah, M. (2025). Detecting Student Engagement with Convolution Neural Network and Facial Expression Recognition. Traitement Du Signal, 42(2). https://doi.org/10.18280/TS.420229

Appalanaidu, M. V. & Kumaravelan, G. (2023). Rice plant nutrient deficiency classification using modified MOBILENET convolutional neural network. International Journal of Modeling, Simulation, and Scientific Computing, 14(1). https://doi.org/10.1142/S1793962322430036;REQUESTEDJOURNAL:JOURNAL:IJMSSC;PAGEGROUP:STRING:PUBLICATION

Babu, T., Ebin, P. M. & Nair, R. R. (2024). Real-Time Facial Expression Recognition Using Deep Learning for Enhanced Human-Machine Interactions. 2024 IEEE Flagship International BIT Conference: Next Generation Applications in Green Energy Technology, BITCON 2024. https://doi.org/10.1109/BITCON63716.2024.10984634

Dhope, P. & Neelagar, M. B. (2022). Real-Time Emotion Recognition from Facial Expressions using Artificial Intelligence. 2022 2nd International Conference on Artificial Intelligence and Signal Processing, AISP 2022. https://doi.org/10.1109/AISP53593.2022.9760654

Díaz-Ramírez, J. & Díaz-Ramírez, J. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 180–181. https://doi.org/10.4067/S0718-33052021000200180

Dwijayanti, S., Iqbal, M. & Suprapto, B. Y. (2022). Real-Time Implementation of Face Recognition and Emotion Recognition in a Humanoid Robot Using a Convolutional Neural Network. IEEE Access, 10, 89876–89886. https://doi.org/10.1109/ACCESS.2022.3200762

Gursesli, M. C., Lombardi, S., Duradoni, M., Bocchi, L., Guazzini, A. & Lanata, A. (2024). Facial Emotion Recognition (FER) Through Custom Lightweight CNN Model: Performance Evaluation in Public Datasets. IEEE Access, 12, 45543–45559. https://doi.org/10.1109/ACCESS.2024.3380847

Haq, H. B. U., Akram, W., Irshad, M. N., Kosar, A. & Abid, M. (2024). Enhanced Real-Time Facial Expression Recognition Using Deep Learning. Acadlore Transactions on AI and Machine Learning, 3(1), 24–35. https://doi.org/10.56578/ATAIML030103

Hassan, E., Bhatnagar, R., El-Hafeez, T. A. & Shams, M. Y. (2025). Detection of Suicide and Depression for Early Intervention and Initiative-taking Mental Healthcare. Proceedings of IEEE International Conference on Signal Processing,Computing and Control, 99–104. https://doi.org/10.1109/ISPCC66872.2025.11039547

Hassouneh, A., Mutawa, A. M. & Murugappan, M. (2020). Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods. Informatics in Medicine Unlocked, 20, 100372. https://doi.org/10.1016/J.IMU.2020.100372

Hussain, S. A., Reddy, N. Y., Srivardhan, J., Sharma, A., Sharma, S. & Gochhait, S. (2024). Automated Emotion Recognition from Facial Expressions using Convolutional Neural Network. 2024 5th International Conference on Data Analytics for Business and Industry, ICDABI 2024, 139–143. https://doi.org/10.1109/ICDABI63787.2024.10800158

Kartali, A., Roglic, M., Barjaktarovic, M., Duric-Jovicic, M. & Jankovic, M. M. (2018). Real-time Algorithms for Facial Emotion Recognition: A Comparison of Different Approaches. 2018 14th Symposium on Neural Networks and Applications, NEUREL 2018. https://doi.org/10.1109/NEUREL.2018.8587011

Kaur, M. & Kumar, M. (2024). Facial emotion recognition: A comprehensive review. Expert Systems, 41(10), e13670. https://doi.org/10.1111/EXSY.13670;WGROUP:STRING:PUBLICATION

Mohammed, O. N. (2024). Enhancing Pulmonary Disease Classification in Diseases: A Comparative Study of CNN and Optimized MobileNet Architectures. Journal of Robotics and Control (JRC), 5(2), 427–440. https://doi.org/10.18196/JRC.V5I2.21422

Mukul, E. & Büyüközkan, G. (2023). Digital transformation in education: A systematic review of education 4.0. Technological Forecasting and Social Change, 194, 122664. https://doi.org/10.1016/J.TECHFORE.2023.122664

Ocen, S., Elasu, J., Aarakit, S. M. & Olupot, C. (2025a). Artificial intelligence in higher education institutions: review of innovations, opportunities and challenges. Frontiers in Education, 10, 1530247. https://doi.org/10.3389/FEDUC.2025.1530247/BIBTEX

Ocen, S., Elasu, J., Aarakit, S. M. & Olupot, C. (2025b). Artificial intelligence in higher education institutions: review of innovations, opportunities and challenges. Frontiers in Education, 10, 1530247. https://doi.org/10.3389/FEDUC.2025.1530247/BIBTEX

Opitz, J. (2024). A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice. Transactions of the Association for Computational Linguistics, 12, 820–836. https://doi.org/10.1162/tacl_a_00675

Pathar, R., Adivarekar, A., Mishra, A. & Deshmukh, A. (2019). Human Emotion Recognition using Convolutional Neural Network in Real Time. Proceedings of 1st International Conference on Innovations in Information and Communication Technology, ICIICT 2019. https://doi.org/10.1109/ICIICT1.2019.8741491

Pereira, R., Mendes, C., Ribeiro, J., Ribeiro, R., Miragaia, R., Rodrigues, N., Costa, N. & Pereira, A. (2024). Systematic Review of Emotion Detection with Computer Vision and Deep Learning. Sensors, 24(11). https://doi.org/10.3390/S24113484,

Pise, A. A., Alqahtani, M. A., Verma, P., Purushothama, K., Karras, D. A., Prathibha, S. & Halifa, A. (2022). Methods for Facial Expression Recognition with Applications in Challenging Situations. Computational Intelligence and Neuroscience, 2022, 9261438. https://doi.org/10.1155/2022/9261438

Poongodai, A., Bhavitha, V., Hemanth, D., Jahnavi, G. & Huzma, S. (2025). Human Emotion Detection Through Real-Time Facial Expressions Using Deep Learning. Proceedings of the 6th International Conference on Inventive Research in Computing Applications, ICIRCA 2025, 1298–1303. https://doi.org/10.1109/ICIRCA65293.2025.11089747

Rakesh, K. R., Namita, G. R. & Kulkarni, R. (2022). Image Recognition, Classification and Analysis Using Convolutional Neural Networks. 2022 1st International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2022. https://doi.org/10.1109/ICEEICT53079.2022.9768474

Rathour, N., Singh, R., Gehlot, A., Vaseem Akram, S., Kumar Thakur, A. & Kumar, A. (2022). The decadal perspective of facial emotion processing and Recognition: A survey. Displays, 75, 102330. https://doi.org/10.1016/J.DISPLA.2022.102330

Rehman, A., Mujahid, M., Elyassih, A., AlGhofaily, B. & Bahaj, S. A. O. (2025). Comprehensive Review and Analysis on Facial Emotion Recognition: Performance Insights into Deep and Traditional Learning with Current Updates and Challenges. Computers, Materials and Continua, 82(1), 41–72. https://doi.org/10.32604/CMC.2024.058036

Sajjad, M., Ullah, F. U. M., Ullah, M., Christodoulou, G., Alaya Cheikh, F., Hijji, M., Muhammad, K. & Rodrigues, J. J. P. C. (2023). A comprehensive survey on deep facial expression recognition: challenges, applications, and future guidelines. Alexandria Engineering Journal, 68, 817–840. https://doi.org/10.1016/J.AEJ.2023.01.017

Sanli, A. T. & Saran, M. (2024). Application of a Voting-Based Ensemble Method for Recognizing Seven Basic Emotions in Real-Time Webcam Video Images. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. https://doi.org/10.1109/I2CT61223.2024.10543506

Saxena, S., Tripathi, S. & Tsb, S. (2020). Deep Robot-Human Interaction with Facial Emotion Recognition Using Gated Recurrent Units & Robotic Process Automation. Frontiers in Artificial Intelligence and Applications, 332, 115–126. https://doi.org/10.3233/FAIA200773

Sharif, M. S., Afolabi, M. O., Zorto, A. & Elmedany, W. (2022). Enhancement Techniques for Improving Facial Recognition Performance in Convolutional Neural Networks. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2022, 494–499. https://doi.org/10.1109/3ICT56508.2022.9990811

Sharma, K. P., Nagpal, T., Raja Praveen, K. N., Yadav, A., Tham, J., Bhosle, N., Palla, S. R. & Chauhan, M. (2025). Evaluating MobileNetV2 Architecture for Resource-Efficient Facial Emotion Recognition. National Academy Science Letters 2025, 1–5. https://doi.org/10.1007/S40009-025-01671-W

Shehu, H. A., Browne, W. N. & Eisenbarth, H. (2025). Emotion categorization from facial expressions: A review of datasets, methods, and research directions. Neurocomputing, 624, 129367. https://doi.org/10.1016/J.NEUCOM.2025.129367

Singh, E. & Nand, P. (2024). Efficient Multi-Class Facial Emotion Recognition using YOLOv9: A Deep Learning Approach for Real-Time Applications. International Journal of Performability Engineering, 20(9), 581. https://doi.org/10.23940/IJPE.24.09.P6.581590

Srivastava, S., Ali, P., Yadav, S., Khan, A. & Pandey, P. (2025). Sign Ease: AI-Based Gesture Recognition. 2025 International Conference on Pervasive Computational Technologies, ICPCT 2025, 645–649. https://doi.org/10.1109/ICPCT64145.2025.10940959

Tutuianu, G. I., Liu, Y., Alamäki, A. & Kauttonen, J. (2023). Benchmarking Deep Facial Expression Recognition: An Extensive Protocol with Balanced Dataset in the Wild. https://arxiv.org/pdf/2311.02910

Wang, Q., Yan, X. & Wang, Y. (2023). Research on deep learning-based facial expression recognition and its application in online learning state monitoring. Https://Doi.Org/10.1117/12.3005824, 12799, 459–464. https://doi.org/10.1117/12.3005824

Wang, Y., Jiang, P., Wang, C. & Hachisuka, S. (2024). Facial Recognition: Decoding Emotions in Online Collaboration. 2024 12th International Conference on Information and Education Technology, ICIET 2024, 333–337. https://doi.org/10.1109/ICIET60671.2024.10542815

Zhang, Z., Fort, J. M. & Giménez Mateu, L. (2023). Facial expression recognition in virtual reality environments: challenges and opportunities. Frontiers in Psychology, 14, 1280136. https://doi.org/10.3389/FPSYG.2023.1280136/BIBTEX

Zhe, J., Ouyang, L., Pan, S.-T. & Wu, H.-J. (2025). FPGA Chip Design of Sensors for Emotion Detection Based on Consecutive Facial Images by Combining CNN and LSTM. Electronics 2025, Vol. 14, Page 3250, 14(16), 3250. https://doi.org/10.3390/ELECTRONICS14163250

Zhu, Q., Zhuang, H., Zhao, M., Xu, S. & Meng, R. (2024). A study on expression recognition based on improved mobilenetV2 network. Scientific Reports, 14(1), 8121. https://doi.org/10.1038/S41598-024-58736-X

Descargas

Publicado

2025-11-30

Número

Sección

Artículos