Flow and hydraulic depth monitoring system for the Hydraulic Laboratory of the Faculty of Mathematical and Physical Sciences

Authors

DOI:

https://doi.org/10.53591/iti.v13i14.1197

Keywords:

Arduino, Sensors, hydraulic depth, Flow rate, IoT

Abstract

Context: The objective of this work is to develop a system for measuring and monitoring flow and hydraulic depth for the Hydraulics Pilot Laboratory of the Faculty of Mathematics and Physics of the University of Guayaquil, to show flow and hydraulic depth in real time and store them in an IoT (Internet of Things) server. Method: Using the Arduino microcontroller, an MPX 5500 differential pressure sensor and HC-SR04 ultrasonic sensors for measurements according to variations in flow characteristics. Results: The IoT platform allows teachers and students to analyze the data received by each sensor in real time during hydraulics practices in the canal. Conclusions: The prototype was designed with open-source components and software. The calibration of the sensors was carried out with empirical data and practices performed in the laboratory provided by teachers of the Civil Engineering Career.

Metrics

Metrics Loading ...

References

Agustin, L. M. (2010). MEDIDORES DE FLUJO EN CANALES ABIERTOS. Guatemala: UNIVERSIDAD DE SAN CARLOS DE GUATEMALA.

Andres, M. B. (2018). Internet de las Cosas. Madrid: REUS.

Ayala, L., & Albóniga, G. (2015). Dispositivo electrónico de medición del caudal de agua para canales abiertos. Revista Ciencias Técnicas Agropecuarias, 91-99.

Cayenne. (2021, Julio). CAYENNE MY DEVICES. Tratto da CAYENNE MY DEVICES: https://developers.mydevices.com/cayenne/features/

Chaudhry, M. H. (2008). Open-Channel Flow. In M. H. Chaudhry, Open-Channel Flow Second Edition (p. 523). Prentice Hall.

Manzano Juan, P. V. (2015). Design and installation alternatives of Venturi injectors in drip irrigation. Brazil: Universidade Federal do Ceará.

MANZANO-JUÁREZ, J. (2008). Análisis del inyector Venturi y mejora de su instalación en los sistemas de riego localizado. Valencia: Universitat Politécnica de València.

Ortega, R. (2013). Diseño Construcción y Operación de un Banco Hidráulico y Venturímetro para Pruebas Hidráulicas. Quito: Universidad Central del Ecuador.

Palman, L. &. (2015). Mediciones en laboratorio con equipo flowtracker (ADV). . IV SIMPOSIO SOBRE MÉTODOS EXPERIMENTALES EN HIDRÁULICA, 10.

Rodriguez, J. M. (2016). Manual de Hidrometria Basica. España: SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA.

Sandoval-MendozaI. (2017, Julio). Modelos matemáticos para la estimación del caudal en vertedores Sutro utilizados en sistemas de riego. Revista Ciencias Técnicas Agropecuarias, 26(3), 30-38.

CADAVID, J.H.: Hidráulica de canales: fundamentos, Ed. Universidad Eafit, ISBN-9588281288, España, 2006.

WSC (Water Survay of Canada) (2006). "Comparison Measurements between SonTek FlowTracker Acoustic Doppler Velocimeter and Price Current Meters". En: http://www.wmo.int - Fecha de acceso: 05-12-2014

Published

2021-11-30

How to Cite

Corapi, P., Acaro Chacon, X. C., Gaibor Nieto, J. A., & Villavicencio Bajaña, W. F. (2021). Flow and hydraulic depth monitoring system for the Hydraulic Laboratory of the Faculty of Mathematical and Physical Sciences. Investigación, Tecnología E Innovación, 13(14), 1–17. https://doi.org/10.53591/iti.v13i14.1197

Issue

Section

Article

Most read articles by the same author(s)