Sistema distribuido de sensores de bajo consumo para monitorear variables ambientales en espacios interiores

Autores/as

DOI:

https://doi.org/10.53591/easi.v1i1.1766

Palabras clave:

red distribuida, sensores medioambientales, humedad, temperatura, base de datos

Resumen

En la actualidad, los estudios de las condiciones de aire en
ambientes internos son asuntos de gran importancia, debido a que la mayoría
de las personas permanecen durante el día en lugares cerrados, tales como
edificios, casas, aulas, oficinas, etc. Este artículo describe el desarrollo de un
prototipo de una red distribuida de sensores medio ambientales, los cuales se
encargan de medir las variables ambientales de humedad y temperatura, con
sensores eficientes, de bajo costo y bajo consumo energético. Este sistema
permite monitorear tres puntos distintos dentro de un entorno ambiental
diferente, ubicados en sitios estratégicos, logrando así obtener una muestra
diferente. Los prototipos captan las mediciones de las variables ambientales
y las registra en una base de datos contenida en un servidor web para después
ser presentada al usuario final; estas mediciones se realizan y visualizan en
tiempo real

Biografía del autor/a

Oliver Palacios, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112

Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112

Angel Marcel Plaza Vargas, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112

Angel Marcel Plaza Vargas es Ingeniero en Computación especialización Sistemas Tecnológicos (Faculatad de Ingeniería Eléctrica y Computación). Escuela Superior Politécnica del Litoral: Guayaquil, Guayas, EC., 2004. Máster Universitario en Modelado Computacional en Ingeniería. Escuela Superior Politécnica del Litoral: Guayaquil, Guayas, EC., 2016. Labora como docente investigador en la Universidad de Guayaquil - Facultad de Ingeniería Industrial - Carrera de Telemática.

Katty Nancy Lino Castillo, Facultad de Ingeniería Industrial, Universidad de Guayaquil. Guayaquil, Ecuador, 090112

LSI. Katty Nancy Lino Castillo, MSI. Licenciada en Sistemas de Informacion. Escuela Superior Politécnica del Litoral, 2008. Magister en Sistemas de Informacion (Sistemad) Education. Escuela Superior Politécnica del Litoral, , 2013. Se desempeña actualmente como docente en la Universidad de Guayaquil - Facultad de Ingeniería Industrial - Carrera de Ingeniería Industrial.

 

Citas

Afzal, M., Li, J., Amin, W., Huang, Q., Umer, K., Ahmad, S. A., Ahmad, F., & Raza, A. (2022). Role of blockchain technology in transactive energy market: A review. Sustainable Energy Technologies and Assessments, 53, 102646. https://doi.org/10.1016/j.seta.2022.102646

Alvi, S. T., Uddin, M. N., Islam, L., & Ahamed, S. (2022). DVTChain: A blockchain-based decentralized mechanism to ensure the security of digital voting system voting system. Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2022.06.014

Broday, D. M., Arpaci, A., Bartonova, A., Castell-Balaguer, N., Cole-Hunter, T., Dauge, F. R., Fishbain, B., Jones, R. L., Galea, K., Jovasevic-Stojanovic, M., Kocman, D., Martinez-Iñiguez, T., Nieuwenhuijsen, M., Robinson, J., Svecova, V., & Thai, P. (2017). Wireless distributed environmental sensor networks for air pollution measurement-the promise and the current reality. Sensors (Switzerland), 17(10). https://doi.org/10.3390/s17102263

Budi, S., Susanto, F., de Souza, P., Timms, G., Malhotra, V., & Turner, P. (2018). In search for a robust design of environmental sensor networks. Environmental Technology (United Kingdom), 39(6). https://doi.org/10.1080/09593330.2017.1310303

Chan, K., Schillereff, D. N., Baas, A. C. W., Chadwick, M. A., Main, B., Mulligan, M., O’Shea, F. T., Pearce, R., Smith, T. E. L., van Soesbergen, A., Tebbs, E., & Thompson, J. (2021). Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress in Physical Geography, 45(3). https://doi.org/10.1177/0309133320956567

Dhall, S., Mehta, B. R., Tyagi, A. K., & Sood, K. (2021). A review on environmental gas sensors: Materials and technologies. In Sensors International (Vol. 2). https://doi.org/10.1016/j.sintl.2021.100116

Guo, H., & Yu, X. (2022). A survey on blockchain technology and its security. Blockchain: Research and Applications, 3(2). https://doi.org/10.1016/j.bcra.2022.100067

Han, Q., Liu, P., Zhang, H., & Cai, Z. (2019). A Wireless Sensor Network for Monitoring Environmental Quality in the Manufacturing Industry. IEEE Access, 7. https://doi.org/10.1109/ACCESS.2019.2920838

Handayani, A. S., Husni, N. L., Nurmaini, S., & Permatasari, R. (2020). Environmental Application with Multi Sensor Network. Computer Engineering and Applications, 9(1).

Jumaah, H. J., Kalantar, B., Mansor, S., Halin, A. A., Ueda, N., & Jumaah, S. J. (2021). Development of UAV-based PM2.5 monitoring system. Drones, 5(3). https://doi.org/10.3390/drones5030060

Khan, K. M., Arshad, J., & Khan, M. M. (2020). Simulation of transaction malleability attack for blockchain-based e-Voting. Computers and Electrical Engineering, 83. https://doi.org/10.1016/j.compeleceng.2020.106583

Liao, Z., & Cheng, S. (2023). RVC: A reputation and voting based blockchain consensus mechanism for edge computing-enabled IoT systems. Journal of Network and Computer Applications, 209, 103510. https://doi.org/10.1016/J.JNCA.2022.103510

Liu, Y., & Xu, G. (2021). Fixed degree of decentralization DPoS consensus mechanism in blockchain based on adjacency vote and the average fuzziness of vague value. Computer Networks, 199. https://doi.org/10.1016/j.comnet.2021.108432

Mao, F., Khamis, K., Krause, S., Clark, J., & Hannah, D. M. (2019). Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. In Frontiers in Earth Science (Vol. 7). https://doi.org/10.3389/feart.2019.00221

Merlo, V., Pio, G., Giusto, F., & Bilancia, M. (2022). On the exploitation of the blockchain technology in the healthcare sector: A systematic review. Expert Systems with Applications, 118897. https://doi.org/10.1016/j.eswa.2022.118897

Mookherji, S., Vanga, O., & Prasath, R. (2022). Blockchain-based e-voting protocols. Blockchain Technology for Emerging Applications: A Comprehensive Approach, 239–266. https://doi.org/10.1016/B978-0-323-90193-2.00006-5

Ooi, V., Kian Peng, S., & Soh, J. (2022). Blockchain land transfers: Technology, promises, and perils. Computer Law and Security Review, 45. https://doi.org/10.1016/j.clsr.2022.105672

Panja, S., & Roy, B. (2021). A secure end-to-end verifiable e-voting system using blockchain and cloud server. Journal of Information Security and Applications, 59. https://doi.org/10.1016/j.jisa.2021.102815

Perez, A. O., Bierer, B., Scholz, L., Wöllenstein, J., & Palzer, S. (2018). A wireless gas sensor network to monitor indoor environmental quality in schools. Sensors (Switzerland), 18(12). https://doi.org/10.3390/s18124345

Qutieshat, A., Aouididi, R., & Arfaoui, R. (2019). Design and Construction of a Low-Cost Arduino-Based pH Sensor for the Visually Impaired Using Universal pH Paper. Journal of Chemical Education, 96(10). https://doi.org/10.1021/acs.jchemed.9b00450

Rahman, M. S., Chamikara, M. A. P., Khalil, I., & Bouras, A. (2022). Blockchain-of-blockchains: An interoperable blockchain platform for ensuring IoT data integrity in smart city. Journal of Industrial Information Integration, 30, 100408. https://doi.org/10.1016/J.JII.2022.100408

Rajasekaran, A. S., Azees, M., & Al-Turjman, F. (2022). A comprehensive survey on blockchain technology. Sustainable Energy Technologies and Assessments, 52. https://doi.org/10.1016/j.seta.2022.102039

Verma, M. (2017a). International journal of engineering sciences & research technology working, operation and types of arduino microcontroller. International Journal of Engineering Sciences & Research Technology Working, 6(6).

Verma, M. (2017b). Working, Operation and Types of Arduino Microcontroller. © International Journal of Engineering Sciences & Research Technology, 6(6).

Xu, Y., Tao, X., Das, M., Kwok, H. H. L., Liu, H., Wang, G., & Cheng, J. C. P. (2023). Suitability analysis of consensus protocols for blockchain-based applications in the construction industry. Automation in Construction, 145, 104638. https://doi.org/10.1016/J.AUTCON.2022.104638

Yang, X., Yi, X., Nepal, S., Kelarev, A., & Han, F. (2020). Blockchain voting: Publicly verifiable online voting protocol without trusted tallying authorities. Future Generation Computer Systems, 112, 859–874. https://doi.org/10.1016/j.future.2020.06.051

Yu, F., Lin, H., Wang, X., Yassine, A., & Hossain, M. S. (2022). Blockchain-empowered secure federated learning system: Architecture and applications. Computer Communications. https://doi.org/10.1016/j.comcom.2022.09.008

Zheng, K., Zheng, L. J., Gauthier, J., Zhou, L., Xu, Y., Behl, A., & Zhang, J. Z. (2022). Blockchain technology for enterprise credit information sharing in supply chain finance. Journal of Innovation and Knowledge, 7(4). https://doi.org/10.1016/j.jik.2022.100256

Descargas

Archivos adicionales

Publicado

14-07-2022

Cómo citar

Palacios, O., Plaza Vargas, A. M., & Lino Castillo, K. N. (2022). Sistema distribuido de sensores de bajo consumo para monitorear variables ambientales en espacios interiores . EASI: Ingeniería Y Ciencias Aplicadas En La Industria, 1(1), 1–9. https://doi.org/10.53591/easi.v1i1.1766