Bayesian analysis and digital transformation to optimize internal communication at the Huaquillas Higher Institute
DOI:
https://doi.org/10.53591/scmu.v4i2.2409Keywords:
Digital transformation, internal communication, Bayesian analysis, higher education, ISTHAbstract
The objective of this study was to identify effective digital tools for internal communication at the Huaquillas Higher Institute within the framework of institutional digital transformation. A mixed-method approach was employed, with a quantitative emphasis on data collection through a structured survey targeting students, teachers, and administrative staff. The Bayesian model was used to estimate the posterior probabilities of the effectiveness of five platforms: WhatsApp, Moodle, institutional email, social media, and Google Meet. The results revealed that the most effective tool was WhatsApp, followed by Moodle, and that internal communication has been functional but mainly sustained through unofficial channels. Conducting interviews to answer the research question in environments known for their scarcity demonstrated the suitability of the Bayesian approach, which integrates empirical data and prior knowledge to guide decision-making. This made it a highly appropriate approach for educational contexts facing technological and organizational constraints. Based on the results, the study proposes institutionalizing the use of hybrid channels, merging formal and informal tools, strengthening staff digital training, and carrying out periodic evaluations of the communication ecosystem. It is also suggested that this model be extended to other technical higher education institutions in order to compare the effectiveness of this study’s model with other statistical methods, such as logistic regression or AHP. Ultimately, the combination of Bayesian analysis with strategic digital communication design can significantly contribute to information management in educational institutions undergoing transformation.
Downloads
References
Cevallos Uve, G. E., Ramos López, Y., & Cedeño Hidalgo, E. R. (2021). Metodología para la planificación estratégica prospectiva de la gestión académica en los Institutos Superiores Tecnológicos Públicos de la provincia Santo Domingo de los Tsa’chilas. Universidad y Sociedad, 13(2), 217–227. ISSN 2218-3620. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202021000200217&lng=es&tlng=es.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2021). Bayesian Data Analysis (3.ª ed.). Editorial Chapman & Hall/CRC. Recuperado de https://sites.stat.columbia.edu/gelman/book/BDA3.pdf
González, M., & Torres, L. (2021). Transformación digital en la educación superior. Revista Iberoamericana de Educación, 87(1), 45–62.
Jiménez García, E., & Velasco Quintana, P. J. (Coords.). (2024). Construyendo el futuro de la educación superior en la era digital. Dykinson.
López, R. (2022). Comunicación interna y cultura organizacional. Comunicación y Sociedad, 39(2), 103–120.
Martínez, Y. S. (2019). La Inteligencia Artificial en la transformación de procesos universitarios. TIES, Revista de Tecnología e Innovación en Educación Superior, 2, 1–12.
Ramírez, D., Vargas, P., & Muñoz, J. (2020). Herramientas digitales para la gestión universitaria. Educación y Tecnología, 8(3), 78–89.
Romero Carbonell, M., Romeu Fontanillas, T., Guitert Catasús, M., & Baztán Quemada, P. (2023). La transformación digital en la educación superior: el caso de la UOC. RIED. Revista Iberoamericana de Educación a Distancia, 26(1), 163–179. Recuperado de: https://doi.org/10.5944/ried.26.1.33998
Goodman, S. N. (1999). Toward evidence-based medical statistics. Annals of Internal Medicine, 130(12), 995–1004.
Morales-Gamboa, A., & Sucar, L. E. (2020). Dynamic Bayesian networks for competency-based learning. arXiv preprint arXiv:2008.12114.
Raimo, N., De Marco, M., Vitolla, F., & Rubino, M. (2022). Using Bayesian networks for decision-making in schools. PLoS ONE, 17(5), e0268055.
Pérez, M., & Rivas, F. (2021). Evaluación de plataformas educativas con AHP y redes bayesianas. Revista Iberoamericana de Tecnología Educativa, 17(3), 123–140.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Scripta Mundi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









