Flow and hydraulic depth monitoring system for the Hydraulic Laboratory of the Faculty of Mathematical and Physical Sciences
DOI:
https://doi.org/10.53591/iti.v13i14.1197Keywords:
Arduino, Sensors, hydraulic depth, Flow rate, IoTAbstract
Context: The objective of this work is to develop a system for measuring and monitoring flow and hydraulic depth for the Hydraulics Pilot Laboratory of the Faculty of Mathematics and Physics of the University of Guayaquil, to show flow and hydraulic depth in real time and store them in an IoT (Internet of Things) server. Method: The use of free hardware and software provides a practical and accessible solution. Using the Arduino microcontroller, an MPX 5500 differential pressure sensor and HC-SR04 ultrasonic sensors for measurements according to variations in flow characteristics. Results: The IoT platform allows teachers and students to analyze the data received by each sensor in real time during hydraulics practices. Conclusions: The prototype was designed with open-source components and software. The calibration of the sensors was carried out with empirical data and practices performed in the laboratory provided by teachers of the Civil Engineering Career.
References
Agustin, L. M. (2010). MEDIDORES DE FLUJO EN CANALES ABIERTOS. Guatemala: UNIVERSIDAD DE SAN CARLOS DE GUATEMALA.
Andres, M. B. (2018). Internet de las Cosas. Madrid: REUS.
Ayala, L., & Albóniga, G. (2015). Dispositivo electrónico de medición del caudal de agua para canales abiertos. Revista Ciencias Técnicas Agropecuarias, 91-99.
Cayenne. (2021, Julio). CAYENNE MY DEVICES. Tratto da CAYENNE MY DEVICES: https://developers.mydevices.com/cayenne/features/
Chaudhry, M. H. (2008). Open-Channel Flow. In M. H. Chaudhry, Open-Channel Flow Second Edition (p. 523). Prentice Hall.
Manzano Juan, P. V. (2015). Design and installation alternatives of Venturi injectors in drip irrigation. Brazil: Universidade Federal do Ceará.
MANZANO-JUÁREZ, J. (2008). Análisis del inyector Venturi y mejora de su instalación en los sistemas de riego localizado. Valencia: Universitat Politécnica de València.
Ortega, R. (2013). Diseño Construcción y Operación de un Banco Hidráulico y Venturímetro para Pruebas Hidráulicas. Quito: Universidad Central del Ecuador.
Palman, L. &. (2015). Mediciones en laboratorio con equipo flowtracker (ADV). . IV SIMPOSIO SOBRE MÉTODOS EXPERIMENTALES EN HIDRÁULICA, 10.
Rodriguez, J. M. (2016). Manual de Hidrometria Basica. España: SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA.
Sandoval-MendozaI. (2017, Julio). Modelos matemáticos para la estimación del caudal en vertedores Sutro utilizados en sistemas de riego. Revista Ciencias Técnicas Agropecuarias, 26(3), 30-38.
CADAVID, J.H.: Hidráulica de canales: fundamentos, Ed. Universidad Eafit, ISBN-9588281288, España, 2006.
WSC (Water Survay of Canada) (2006). "Comparison Measurements between SonTek FlowTracker Acoustic Doppler Velocimeter and Price Current Meters". En: http://www.wmo.int - Fecha de acceso: 05-12-2014
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pietro Corapi, Ximena Carolina Acaro Chacon, Joseph Alejandro Gaibor Nieto, Willian Francisco Villavicencio Bajaña
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.