Dynamics of biodiversity change after deforestation

Autores/as

  • Guillermo Gilbert Jaramillo Imperial College London

DOI:

https://doi.org/10.53591/cna.v11i1.263

Palabras clave:

Biodiversity, BACI, Changes, Deforestation

Resumen

The many changes that forests have suffered over the last century have led to biodiversity loss
around the planet. In order to understand these processes and try to predict future biological
diversity loss, spatial comparisons have commonly been used. This research uses spatial and
temporal data aiming to understand better the dynamics of these changes caused by deforestation.
A meta-Analysis was conducted compiling information from 13 studies using before-after-control impact design (BACI) to examine abundance response to deforestation. The results show clearly
that biodiversity tends to decline in the five years after forest loss, though losses are not significant
within the first two years. It was also found that the effects of deforestation on species abundance
varied significantly among taxonomic groups, physical level species occupy in the ecosystem, type
of disturbance, type of perturbation, and constancy in the surveys. The outcome of this research
agrees with results of studies with spatial comparisons, though it is not yet possible to conclude
which is best to predict biodiversity changes. However, these findings deepen our understanding of
the complexity of biodiversity change and deforestation and emphasize importance of generating
more studies that include temporal data.

Citas

Arnqvist, G. y Wooster, D. (1995). Meta-analysis: synthesizing

research findings in ecology and evolution. Trends in

Ecology & Evolution, 10(6): 236-240.

Aronson, M., La Sorte, F., Nilon, C., Madhusudan, K., Goddard,

M., Christopher, Lepcyk y Winter, M. (2014). A global

analysis of the impacts of urbanization on bird and plant

diversity reveals key anthropogenic drivers. Proceedings of

The Royal Society.

Barlow, J. y Peres, C. (2004). Avifaunal responses to single

and recurrent wildfires in Amazonian forests. Ecological

Applications, 14(5): 1358-1373.

Basset, Y., Elroy, C., Hammond, D. y Brown, V. (2001). Shortterm effects of canopy openness on insect herbivores in a

rain forest in Guyana. Journal of Applied Ecology, 38(5):

-1058.

Beissinger, S. (2000). Ecological mechanisms of extinction.

Proceedings of the National Academy of Sciences, 97(22):

-11689.

Bicknell, J., Struebig, M. y Davies, Z. (2015). Reconciling

timber extraction with biodiversity conservation in tropical

forests using reduced-impact logging. Journal of Applied

Ecology, 52(2): 379-388.

Blois, J., Williams, J., Fitzpatrick, M., Jackson, S., y Ferrier,

S. (2013). Space can substitute for time in predicting

climate-change effects on biodiversity. Proceedings of the

National Academy of Sciences, 110(23): 9374-9379.

Borenstein, M., Hedges, L., Higgins, J. y Rothstein, H. (2009).

Introduction to Meta-Analysis. Chichester, United Kingdom:

John Wiley & Sons, Ltd.

Bright (1993). Habitat fragmentation-problems and

predictions for British mammals. Mammal Rev., 23(3/4):

-111.

Burivalova Z, Lee TM, Giam X, Şekercioğlu ÇH, Wilcove DS, Koh

LP. Avian responses to selective logging shaped by species

traits and logging practices. 2015. Proceedings of the Royal

Society B: Biological Sciences. 282(1808): 20150164.

Cardinale, B. (2014). Overlooked local biodiversity loss.

Science, 344(6188): 1098-1098.

Choi, Sei-Woong (2008). Effects of weather factors on the abundance and diversity of moths in a temperate deciduous

mixed forest of Korea. Zoological science, 25(1): 53-58.

Chomitz, K. y Gray, D. (1995). Roads, Lands, Markets and

Deforestation. A spatial model of land use in Belize. The

World Bank, Policy Research Department, Washington.

Paper 1444.

Dickson, B., Noon, B., Flather, C., Jentsch, S., y Block, W.

(2009). Quantifying the multi-scale response of avifauna

to prescribed fire experiments in the southwest United

States. Ecological Applications, 19(3): 608-621.

Dirzo, R., Young, H., Galetti, M., Ceballos, G., Issac, N.,

y Collen, B. (2014). Defaunation in the Anthropocene.

Science, 345(6195): 401-406.

Dornelas, M., Gotelli, N., McGill, B., Shimadzu, H., Moyes,

F., Sievers, C. y Magurran A. (2014). Assemblage Time

Series Reveal Biodiversity Change but Not Systematic Loss.

Science, 344.

Dornelas, M., Magurran, A., Bulckland, S., Chao, A., Chazdon,

R., Colwell, R. y Vellend, M. (2012). Quantifying temporal

change in biodiversity: challenges and opportunities.

Proceedings of The Royal Society Biological Sciences, 280.

Drapeau, P., Villard, M., Leduc, A. y Hannon, S. (2016). Natural

disturbance regimes as templates for the response of bird

species assemblages to contemporary forest management.

Diversity and Distributions, 1-15.

Ernst, R., Linsenmair, E. y Rödel, M. (2006). Diversity erosion

beyond the species level: dramatic loss of functional

diversity after selective logging in two tropical amphibian

communities. Biological Conservation, 133(2): 143-155.

Ewers, R., Boule, M., Gleave, R., Plowman, N., Benedick, S.,

Bernard, H. y Turner, E. (2015). Logging cuts the functional

importance of invertebrates in tropical rainforest. Nature

communications, 6.

Fahrig, L. (2003). Effects of Habitat Fragmentation on

Biodiversity. Annual Review Fragmentation on Biodiversity,

: 487-515.

Garrison, B., Triggs, M. y Wachs, R. (2005). Short-term effects

of group-selection timber harvest on landbirds in montane

hardwood-conifer habitat in the central Sierra Nevada.

Journal of Field Ornithology, 76(1): 72-82.

Gibson, L., Ming Lee, T., Pin Koh, L., Brook, B., Gardner,

T., Baslow, J., Sodhi, N. (2011). Primary forests are

irreplaceable for sustaining tropical biodiversity.

Nature. 478(7369): 378-381.

Glasby, T. y Underwood, T. (1996). Sampling to differentiate

between pulse and press perturbations. Environmental

Monitoring and Assessment, 42: 241-252.

Gurevitch, J. y Hedges L. (1999). Statistical issues in

ecological meta-analyses. Ecology, 80(4): 1142-1149.

Hache, S., Pétry, T. y Villard, M.A. (2013). Numerical Response

of Breeding Birds Following Experimental Selection

Harvesting in Northern Hardwood Forests Réponse

numérique de huit espèces d’oiseaux nicheurs à la suite

d’une coupe de jardinage expérimentale en forêt feuillue

septentrionale. Avian Conservation and Ecology: 8(1): 4.

Intachat, J., Holloway, J. y Staines, H. (2001). Effects of

weather and phenology on the abundance and diversity

of geometroid moths in a natural Malaysian tropical rain

forest. Journal of Tropical Ecology, 17(3): 411-429.

Kotliar, N., Kennedy, P. y Ferree, K. (2007). Avifaunal

responses to fire in southwestern montane forests along

a burn severity gradient. Ecological Applications, 17(2):

-507.

Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R.,

Helm, A., Kuussaari, M. y Steffan-Dewenter, I. (2010).

Habitat fragmentation causes immediate and time-delayed

biodiversity loss at different trophic levels. Ecology

Letters, 13: 597-605.

Lindenmayer, D., Wood, J., Cunningham, R., Crane, M.,

Macgregor, C., Michael, D., y Montague-Drake, R. (2009).

Experimental evidence of the effects of a changed matrix

on conserving biodiversity within patches of native forest in an industrial plantation landscape. Landscape Ecology,

(8): 1091-1103.

Loh, J., Green, R., Ricketts, T., Lamoreux, J., Jenkins, M.,

Kapos, V., y Randers, J. (2005). The living Planet Index:

using species population time series to track trends in

biodiversity. Philosophical Transactions of The Royal

Society, 360: 289-295.

Mace, G., Collen, B., Fuller, R., y Boakes, E. (2010).

Population and geographic range dynamics: implications

for conservation planning. Philosophical Transactions of

The Royal Society, 365: 3743-3751.

Martinson, M. y Raupp, M. (2013). A meta-analysis

of the effects of urbanization on ground beetle

communities. Ecosphere, 4(5): 1-24.

Morris, R. (2010). Anthopogenic impacts on tropical

forest biodiversity: a network structure and ecosystem

functioning perspective. Philosophical Transactions:

Biological Sciences, 365: 3709-3718.

Navedo, J. y Masero, J. (2008). Effects of traditional clam

harvesting on the foraging ecology of migrating curlews

(Numenius arquata). Journal of Experimental Marine

Biology and Ecology, 355: 59-65.

Newbold, T., Hudson, L., Phillips, H., Hill, S., Contu, S.,

Lysenko, I. y Purvis, A. (2014). A global model of the

response of tropical and sub-tropical forest biodiversity

to anthropogenic pressures. Proceedings of The Royal

Society, 281.

Newbold, T., Scharlemann, J., Butchart, S., Sekercioglu, Ç.,

Alkemade, R., Booth, H. y Purves, D. (2013). Ecological

traits affect the response of tropical forest bird species to

land-use intensity. Proceedings of The Royal Society, 280.

Owens, I. y Bennett, P. (2000). Ecological basis of extinction

risk in birds: Habitat loss versus human persecution and

introduced predators. PNAS, 97(22): 12144-12148.

Phillips, H.R., Newbold, T. y Purvis, A. 2017. Land-use effects

on local biodiversity in tropical forests vary between

continents. Biodiversity and Conservation, 26(9): 2251-

Price, S., Browen, R. y Dorcas, M. (2012). Evaluating the

effects of urbanisation on salamander abundances using a

before-after control-impact design. Freshwater Biology,

(1): 193-203.

R Development Core Team (2015). R: A language and

environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. .

Raudenbush, S. (2009). Analyzing Effect Sizes: Random

Effects Models. In H. Cooper, L. Hedges, & J. Valentine,

The Handbook of Research Synthesis and Meta-Analysis

(2nd edition ed., pp. 295-315). New York: Russell Sage

Foundation.

Sala, O., Chapin III, S., Armesto, J., Berlow, E., Bloomfield,

J., Dirzo, R. y Wall, D. (2000, March 10). Global Biodiversity

Scenarios for the Year 2010. Science, 287: 1770-1774.

Singh Sarinda, Smyth Anita y Blomberg Simon (2003). Effect of

a control burn on lizards and their structural environment

in a eucalypt open-forest. Wildlife Research, 29(5): 447-

Songer, M., Aung, M., Senior, B., DeFries, R. y Leimgruber,

P. (2009). Spatial and temporal deforestation dynamics in

protected and unprotected dry forests: a case study from

Myanmar (Burma). Biodiversity Conservation 18: 1001-

Steen, D., Osborne, P., Dovčiak, M., Patrick, D. y Gibbs, J.

(2015). A preliminary investigation into the short-term

effects of a prescribed fire on habitat quality for a snake

assemblage. Herpetological Conservation and Biology,

(1): 263-272.

Stewart-Oaten, A., Murdoch, W. y Parker, K. (1986).

Environmental impact assessment:” Pseudoreplication” in

time?. Ecology, 67(4): 929-940.

Tobias, J. (2015). Biodiversity: Hidden impacts of logging.Nature, 523(7559): 163-164.

Tummers, B. DataThief III. 2006 <http://datathief.org/>

Underwood (1992). Beyond BACI: the detection of

environmental impacts on populations in the real, but

variable, world. Journal of experimental marine biology

and ecology, 161(2): 145-178.

Underwood (1991). Beyond BACI: experimental designs for

detecting human environmental impacts on temporal

variations in natural population. Marine and Freshwater

Research, 42(5): 569-587.

Vellend, M., Baeten, L., Myers-Smith, I., Elmendorf, S.,

Beauséjour, R., Brown, C. y Wipf, S. (2013). Global

meta-analysis reveals no net change in local-scale plant

biodiversity over time. Proceedings of the National

Academy of Sciences, 110(48): 19456-19459.

Viechtbauer, W. (2010). Conducting Meta-Analyses in R with

the metafor Package. Journal of Statistical Software,

(3): 48.

Walker. L., Wardle, D., Bardgett, R. y Clarkson, B. (2010). The

use of chronosequences in studies of ecological succession

and soil development. Journal of Ecology, 98(4): 725-736.

Winfree, R., Fox, J., Williams, N., Reilly, J. y Cariveau,

D. (2015). Abundance of common species, not species

richness, drives delivery of a real-world ecosystem service.

Ecology letters, 18(7): 626-635.

Descargas

Publicado

2021-05-19

Cómo citar

Gilbert Jaramillo, G. . (2021). Dynamics of biodiversity change after deforestation. Revista Científica Ciencias Naturales Y Ambientales, 11(1), 28–36. https://doi.org/10.53591/cna.v11i1.263