Conclusions
In the last 20 years, the detection of microplastics in aquatic
and terrestrial environments and in the air has set off alarm
bells in the scientific and industrial sectors; the harmful
effects of these micrometric materials on the health of living
beings have been scientifically corroborated. Therefore,
important projects have been initiated around the world to
study this artificial phenomenon in order to minimize its
effects on the planet's ecosystems and living beings.
Photochemistry provides the conceptual tools necessary to
understand and develop technological strategies by which it
would be possible to break down microplastics to the extent
of harmless mineral compounds. The photo-degradation
reactions of plastics depend mostly on the presence of
water, sunlight, imperfections and/or contaminants in the
plastic and also on the chemical composition of the polymer
to be degraded.
The times of photo-degradation reactions of plastics are
very long, so the use of heterogeneous photocatalysts to
accelerate these photo-degradation processes constitutes a
technology strategy with great potential for success to be
considered in the future. Great advances have been made in
the development of photocatalysts for the degradation of
microplastics, it is estimated that within a few decades we
will be in the presence of the emergence of important
technologies for environmental decontamination of
microplastics, and photocatalysis will undoubtedly play a
leading role in the purification of seas, rivers and even the
air and land of our planet.
References
[1] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang,
J., Abu-Omar, M., Scot,t S., Suh, S. ACS Sustainable Chemistry
Engineering vol. 8, pp. 3494-3511, 2020.
[2] Gewert, B., Plassmann, M., Macleod, M. Environmental
Science Processes & Impact Vol. s17(9), pp. 1513-1521, 2015.
[3] Sen, S. K., Raut, S. Journal Environmental Chemical
Engineering vol. 3, pp.462-473, 2015.
[4] Lambert, S. Environmental Risk of Polymer and their
Degradation Products pp. 1-198, 2013.
[5] Webb, H., Arnott, J., Crawford, R., Ivanova, E. Polymers. vol.
5, pp. 1-18, 2013.
[6] Yousif, E., Haddad, R. Springerplus. vol. 2, pp. 1-32, 2013.
[7] Niaounakis, M. Management Mar Plastic Debris. pp. 127-142,
2017
[8] Daglen, B. C, Tyler, D. R. Green Chemistry Letters and
Reviews. vol. 3, pp. 69-82, 2010.
[9] Rabek, J. F. in Photodegradation of Polymers, Springer Berlin
Heidelberg, Berlin, Heidelberg pp. 51-97. 1996.
[10] OECD Environment Directorate. 168, 2021.
[11] Andrady, A. Marine Pollution Bulletin. vol. 62(8), pp. 1596–
1605, 2011.
[12] Auta, H. S., Emenike, C., Fauziah, S. Environment
International. Vol. 102, pp. 165-176, 2017.
[13] Singh, B., Sharma, N. (2008) Polymer Degradation and
Stability. vol. 93(3), pp. 561-584, 2008.
[14] Ragusa, A., Svelato, A., Santacroce, C., Catalano, P.,
Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C. A.,
Baiocco, F., Draghi, S., D’Amore, E., Rinaldo, D., Matta, M.,
Giorgini, E. Plasticenta: Microplastics in human placenta,
bioRxiv, DOI:10.1101/2020.07.15.198325. 2020.
[15] Bratovcic, A. Journal of Nanosciience & Nanotechnology
Applications. vol. 3, pp. 304-312, 2019.
[16] Crawford CB & B Quinn (2017) Microplastic pollutants.
Amsterdam, Netherlands. Elsevier, 336.
[17] Doble M & A Kumar (2005) in Biotreatment of industrial
effluents, eds. M. Doble and A. Kumar. 101-110.
[18] Webb, H. K., Arnott, J., Crawford, R. J., Ivanova, E. P. Plastic
degradation and its environmental implications with special
reference to poly(ethylene terephthalate), Polymers (Basel). vol. 5,
pp. 1-18, 2013
[19] Rabek, J. F. (1995) in Polymer Photodegradation, Chapman
& Hill.
[20] Ryberg, M. W., Laurent, A., Hauschild, M. Mapping of global
plastics value chain. Vol. 96, 2018.
[21] Fotopoulou, K. N., Karapanagioti, K. K. Degradation of
Various Plastics in the Environment, Handbook Environmental
Chemistry vol. 78, pp. 71-92, 2019.
[22] Pickett, J. R. Weathering of plastics, Elsevier Inc., Third Edit,
2018.
[23] Fabiyi J.S. & A.G. Mcdonald (2014) Maderas, Ciencia y
Tecnología. 16:275–290.
[24] Lambert, S., Sinclair, C. J., Bradley, E. L, Boxall, A. B.
Science Total Environmental. Vol. 447, p.p. 225-234, 2013.
[25] Crawford, C. B., Quinn, B. Microplastic pollutants.
Amsterdam, Netherlands. Elsevier, pp. 336, 2017.
[26] Wetherbee, G., Baldwin, A., Ranville, J. It is raining plastic.:
U.S. Geological Survey Open-File Report. p.p. 1048, 2019.
Disponible en https://pubs.er.usgs.gov/publication/ofr20191048
26//2020.
[27] Klein S, Dimzon I, Eubeler J & T Knepper (2018) Analysis,
Occurrence, and Degradation of Microplastics in the Aqueous
Environment. In: Wagner M., Lambert S. (eds) Freshwater
Microplastics. The Handbook of Environmental Chemistry
Springer, Cham, 58:302.
[28] Menéndez-Pedriza, J. Interaction of environmental pollutants
with microplastics: A critical review of sorption factors,
bioaccumulation and ecotoxicological effects, 2020.
DOI:10.3390/TOXICS8020040.
[29] Fotopoulou, K. N., Karapanagioti, H. K. in Hazardous
Chemicals Associated with Plastics in the Marine Environment,
Springer International Publishing AG, 2017.
[30] Canopoli, L., Coulon, F., Wagland, S. T. Science Total
Environmental vol. 698, pp. 134125, 2020
[31] Rabek, J. F. Photodegradation of Polymers, Springer
International Publishing, Berlin, Heidelberg, 1996.
[32] Niki, E., Yamamoto, Y., Kamiya, Y. Oxidative Degradation
of Polymers. vol. III, pp. 78-95, 1978.
[33] Rabek, J. F. Polymer Photodegradation. pp. 24–66, 1995.
[34] Malhotra, S. K., Pisharody, L., Karim, A. V. Journal of
Materials Research. vol. 99, pp. 163-178, 2021.
[35] Ouyang, Z., Yang, Y., Zhang, C., Zhu, S., Qin, L., Wang, W.,
He, D., Zhou, Y., Luo, H., Qin, F. Journal of Materials Chemicals
A. vol. 9, pp. 13402-13441, 2021.
[36] Lee, Q. Y, Li, H. Photocatalytic degradation of plastic waste:
A mini review, Micromachines, 2021. DOI:10.3390/mi12080907.
[37] Beladi-Mousavi, S. M., Hermanová, S., Ying, Y., Plutnar, J.,
Pumera, M. ACS Applied Materials & Interfaces. 2021.
DOI:10.1021/acsami.1c04559.