Infodemic and media literacy in the face of the risks of automated disinformation in digital environments
DOI:
https://doi.org/10.53591/scmu.v4i2.2309Keywords:
infodemic, media literacy, automated misinformation, digital media, algorithmic bias, fact checkingAbstract
In today’s digital environment, one of the most pressing threats to information quality and public trust is the relentless surge of automated content, especially bots, deepfakes and biased algorithms. Driven by this challenge, the present study sets out to identify and synthesize the most effective media literacy strategies deployed between 2019 and 2025 to neutralize these specific risks. Following the PRISMA-ScR framework, a comprehensive scoping review was carried out in which 42 key studies were rigorously selected and examined through both qualitative and quantitative lenses, including the calculation of an aggregated effect size (Hedges’ g). The analysis shows that a combined approach—training in critical thinking, use of automated verification tools, and basic algorithmic education—delivers the strongest results (g≈0.71), far outperforming any of these tactics alone. The significance of an integrated media literacy paradigm that really increases users’ resistance to automated disinformation is shown by these findings. Lastly, the study offers specific suggestions for incorporating these insights into educational curricula, especially in Latin America, so that people can successfully and unflinchingly traverse the complicated information environment of today.
Downloads
References
Aparici, R., Bordignon, F. R. A., y Martínez-Pérez, J. (2021). Alfabetización algorítmica basada en la metodología de Paulo Freire. Perfiles Educativos, 43(Especial), 36–54. https://doi.org/10.22201/iisue.24486167e.2021.Especial.61019
Barrientos-Báez, A., Piñeiro Otero, M. T., y Porto Renó, D. (2024). Imágenes falsas, efectos reales. Deepfakes como manifestaciones de la violencia política de género. Revista Latina de Comunicación Social, 82, 1–30. https://doi.org/10.4185/rlcs-2024-2278
Baumann, F., Arora, N., Rahwan, I., y Czaplicka, A. (2025). Dynamics of Algorithmic Content Amplification on TikTok (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2503.20231
Braun, V., y Clarke, V. (2019). Reflecting on reflexive thematic analysis. Qualitative Research in Sport, Exercise and Health, 11(4), 589–597. https://doi.org/10.1080/2159676X.2019.1628806
Brodsky, J. E., Brooks, P. J., Scimeca, D., Galati, P., Todorova, R., y Caulfield, M. (2021). Associations Between Online Instruction in Lateral Reading Strategies and Fact-Checking COVID-19 News Among College Students. AERA Open, 7, 23328584211038937. https://doi.org/10.1177/23328584211038937
Brodsky, J. E., Brooks, P. J., Scimeca, D., Todorova, R., Galati, P., Batson, M., Grosso, R., Matthews, M., Miller, V., y Caulfield, M. (2021a). Improving college students’ fact-checking strategies through lateral reading instruction in a general education civics course. Cognitive Research: Principles and Implications, 6(1), 23. https://doi.org/10.1186/s41235-021-00291-4
Bulger, M., y Davison, P. (2018). The Promises, Challenges, and Futures of Media Literacy. Journal of Media Literacy Education, 10(1), 1–21. https://doi.org/10.23860/JMLE-2018-10-1-1
Cheung, J. C., y Ho, S. S. (2025). Explainable AI and trust: How news media shapes public support for AI-powered autonomous passenger drones. Public Understanding of Science, 34(3), 344–362. https://doi.org/10.1177/09636625241291192
Cinelli, M., De Francisci Morales, G., Galeazzi, A., Quattrociocchi, W., y Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), e2023301118. https://doi.org/10.1073/pnas.2023301118
Council of Europe. (2024). IRIS Special: Focus on media literacy. European Audiovisual Observatory. https://rm.coe.int/iris-2024-2-media-literacy/1680b06196
Dogruel, L., Masur, P., y Joeckel, S. (2022). Development and Validation of an Algorithm Literacy Scale for Internet Users. Communication Methods and Measures, 16(2), 115–133. https://doi.org/10.1080/19312458.2021.1968361
Ferrara, E., Cresci, S., y Luceri, L. (2020). Misinformation, manipulation, and abuse on social media in the era of COVID-19. Journal of Computational Social Science, 3(2), 271–277. https://doi.org/10.1007/s42001-020-00094-5
Fieiras Ceide, C., Vaz Álvarez, M., y Túñez López, M. (2022). Verificación automatizada de contenidos en las radiotelevisiones públicas europeas: Primeras aproximaciones al uso de la inteligencia artificial. Redmarka. Revista de Marketing Aplicado, 26(1), 36–51. https://doi.org/10.17979/redma.2022.26.1.8932
Gagrčin, E., Naab, T. K., y Grub, M. F. (2024). Algorithmic media use and algorithm literacy: An integrative literature review. New Media & Society, 14614448241291137. https://doi.org/10.1177/14614448241291137
Guo, Z., Schlichtkrull, M., y Vlachos, A. (2022). A Survey on Automated Fact-Checking. Transactions of the Association for Computational Linguistics, 10, 178–206. https://doi.org/10.1162/tacl_a_00454
Haddaway, N. R., Page, M. J., Pritchard, C. C., y McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230. https://doi.org/10.1002/cl2.1230
Herrero-Diz, P., Pérez-Escolar, M., y Varona Aramburu, D. (2022). Competencias de verificación de contenidos: Una propuesta para los estudios de Comunicación. Revista de Comunicación, 21(1), 231–249. https://doi.org/10.26441/RC21.1-2022-A12
Jones-Jang, S. M., Mortensen, T., y Liu, J. (2021). Does Media Literacy Help Identification of Fake News? Information Literacy Helps, but Other Literacies Don’t. American Behavioral Scientist, 65(2), 371–388. https://doi.org/10.1177/0002764219869406
Kong, S.-C., Man-Yin Cheung, W., y Zhang, G. (2021). Evaluation of an artificial intelligence literacy course for university students with diverse study backgrounds. Computers and Education: Artificial Intelligence, 2, 100026. https://doi.org/10.1016/j.caeai.2021.100026
Landis, J. R., y Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310
Lewandowsky, S., y Van Der Linden, S. (2021). Countering Misinformation and Fake News Through Inoculation and Prebunking. European Review of Social Psychology, 32(2), 348–384. https://doi.org/10.1080/10463283.2021.1876983
Lim, G., y Perrault, S. T. (2023). XAI in Automated Fact-Checking? The Benefits Are Modest and There’s No One-Explanation-Fits-All. Proceedings of the 35th Australian Computer-Human Interaction Conference, 624–638. https://doi.org/10.1145/3638380.3638388
Maertens, R., Roozenbeek, J., Basol, M., y Van Der Linden, S. (2021). Long-term effectiveness of inoculation against misinformation: Three longitudinal experiments. Journal of Experimental Psychology: Applied, 27(1), 1–16. https://doi.org/10.1037/xap0000315
Montoya Ramírez, N., Zuluaga Arias, L., y Rivera-Rogel, D. (2020). Periodismo y competencias mediáticas: Una aproximación desde contexto colombiano y ecuatoriano. Revista de Comunicación, 19(1), 185–206. https://doi.org/10.26441/RC19.1-2020-A11
Noguera-Vivo, J. M., y Grandío-Pérez, M. D. M. (2025). Enhancing Algorithmic Literacy: Experimental Study on Communication Students’ Awareness of Algorithm-Driven News. Anàlisi, 71, 37–53. https://doi.org/10.5565/rev/analisi.3718
Oeldorf-Hirsch, A., y Neubaum, G. (2025). What do we know about algorithmic literacy? The status quo and a research agenda for a growing field. New Media & Society, 27(2), 681–701. https://doi.org/10.1177/14614448231182662
Quevedo-Redondo, R., Gómez-García, S., y Navarro-Sierra, N. (2022). Aprendiendo a desinformar: Una estrategia de prebunking con newsgames para estimular la adquisición de competencias en el grado en Periodismo. Anàlisi, 66, 95–112. https://doi.org/10.5565/rev/analisi.3447
Ramírez-Montoya, M.-S., y Lugo-Ocando, J. (2020). Systematic review of mixed methods in the framework of educational innovation. Comunicar, 28(65), 9–20. https://doi.org/10.3916/C65-2020-01
Sádaba, C., y Salaverría, R. (2022). Combatir la desinformación con alfabetización mediática: Análisis de las tendencias en la Unión Europea. Revista Latina de Comunicación Social, 81, 17–33. https://doi.org/10.4185/RLCS-2023-1552
Scheibenzuber, C., Hofer, S., y Nistor, N. (2021). Designing for fake news literacy training: A problem-based undergraduate online-course. Computers in Human Behavior, 121, 106796. https://doi.org/10.1016/j.chb.2021.106796
Suarez-Lledo, V., y Alvarez-Galvez, J. (2022). Assessing the Role of Social Bots During the COVID-19 Pandemic: Infodemic, Disagreement, and Criticism. Journal of Medical Internet Research, 24(8), e36085. https://doi.org/10.2196/36085
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
UNESCO. (2021). Normas mundiales para el desarrollo de planes de estudios de alfabetización mediática e informacional: Directrices. Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. https://www.unesco.org/sites/default/files/medias/files/2022/02/Global%20Standards%20for%20Media%20and%20Information%20Literacy%20Curricula%20Development%20Guidelines_ES.pdf
Vaccari, C., y Chadwick, A. (2020). Deepfakes and Disinformation: Exploring the Impact of Synthetic Political Video on Deception, Uncertainty, and Trust in News. Social Media + Society, 6(1), 2056305120903408. https://doi.org/10.1177/2056305120903408
Vizoso, Á., y Vázquez-Herrero, J. (1970). Fact-checking platforms in Spanish. Features, organisation and method. Communication & Society, 127–143. https://doi.org/10.15581/003.32.37819
Wedlake, S., Coward, C., y Lee, J. H. (2024). How games can support misinformation education: A sociocultural perspective. Journal of the Association for Information Science and Technology, 75(13), 1480–1497. https://doi.org/10.1002/asi.24954
Westerlund, M. (2019). The Emergence of Deepfake Technology: A Review. Technology Innovation Management Review, 9(11), 39–52. https://doi.org/10.22215/timreview/1282
World Health Organization. (2020). Ethical considerations to guide the use of digital proximity tracking technologies for COVID-19 contact tracing. World Health Organization. https://iris.who.int/bitstream/handle/10665/334287/9789240010314-eng.pdf
Zhang, H., Zhu, Z., y Caverlee, J. (2023). Evolution of Filter Bubbles and Polarization in News Recommendation (Versión 1). arXiv. https://doi.org/10.48550/ARXIV.2301.10926
Downloads
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Scripta Mundi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.









