Impact of height and location of stacks in a Lagrangian particle model: industrial complex in Venezuela, case study.

Contenido principal del artículo

Gladys Rincón Polo
Lázaro Cremades

Resumen

In absence of information about the system to be simulated, it is important to know the uncertainties associated with the assumptions made. The present work is a comparative study of the effect of the height and location of stacks on the spatial distribution of pollutants in the air and the pollutant concentration on the surface using the Lagrangian particle dispersion model (LADISMO). The study was applied to the dispersion of total suspended particles (TSP) from 27 stacks located in an industrial center in Venezuela. The criterion for comparing Lagrangian particle paths has proved to be stricter than the criterion for comparing TSP-24h concentrations. Furthermore, the effect of the height of emission sources seems to be not important if just a maximum of 25% of the stack heights are modified and the effect of the location of emission sources on the trajectory of pollutants seems to be not relevant.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Rincón Polo, G., & Cremades, L. (2021). Impact of height and location of stacks in a Lagrangian particle model: industrial complex in Venezuela, case study. Ingeniería Química Y Desarrollo, 1(2), 29–40. https://doi.org/10.53591/iqd.v1i2.1267
Sección
Artículos de Investigación

Citas

Achtemeier G.L., 1975. On the initialization problem: A variational adjust model. Mon. We& Rev. 103, 1089.

ARL, 2010. Air recourse laboratory of National Oceanic and Atmospheric Administration (NOAA). Archived Meteorology, http://ready.arl.noaa.gov/READYamet.php, access: April 2010.

Cremades L.V., Rincón G., 2011. Valoración cualitativa de la calidad inventario de emisiones industrial en la costa nororiental de Venezuela. Interciencia. 36 (2), 1-7.

De Baas A.F., Van Dop H., Nieuwstadt F.T., 1986. An application of the Langevin equation for in-homogeneous conditions to dispersion in a convective boundary layer. Q. J. R. Met. Sot. 112, 165-180.

Endlich R. M., Ludwig F. L., Bhumralkar C. M., 1982. A diagnostic model for estimating winds at potential sites for wind turbines. J. Appl. Met. 21, 1441-1454.

Goldbrunner A.W., 1984. Atlas climatologic 1951-70. Ministerio de la Defensa, Fuerza Aé- rea, Comando Logístico, Servicio de Meteorología. República de Venezuela. 68 pp. Haan de P., 1999. On the use of density kernels for concentration estimations within particle and puff dispersion models. Atmos. Environ. 33, 13 (1), 2007-2021

Hanna S.R.,1979. Some statistics of Lagrangian and Eulerian wind fluctuations. J. Appl. Met. 18, 518-525.

Hanna S.R., 1981. Lagrangian and Eulerian time scale relations in the daytime boundary layer. J. Appl. Met. 20, 242-250.

Hernández J.F., Cremades L., Baldasano J.M., 1994. Dispersion modelling of a tall stack plume in the SPanamayalish Mediterranean coast by a particle model. Atmos. Environ. 29, 1331-1341.

Hernández J.F., 1995. Modelizacion de dispersion de contaminantes atmosfericos segun esquema lagrangiano particulas, Doctoral thesis, Universitat Politècnica de Catalunya, España, 318 pp.

Hernández, J.F., Cremades L., 1997. Simulation of tracer dispersion from elevated and surface releases in complex terrain. Atmos. Environ., 31(15): 2337-2348.

Lamb R.G., 1979. The effects of release height on material dispersion in the convective planetary boundary layer. Preprint vol., AMS Fourth Symposium on turbulence, diffusion and air Pollution, Reno, NV. 2343-2361.

Lange R., 1978. ADPIC - A three-dimensional particle-in-cell model for the dispersal of at-mospheric pollutants and its comparison to regional tracer studies. J. Appl. Met., 17, 320.

Mathur R., Peters L.K., 1990. Adjustment of wind fields for application in air pollution mo-delling. Atmos. Environ. 24A, 1095-1106.

Perry R.H., Green D., Maloney J.O., 1985. Perry's Chemical Engineering's Handbook, Mc-Graw-Hill, New York.

Reid J.D., 1979. Markov chain simulations of vertical dispersion in the neutral surface layer for surface and elevated releases. Boundary-layer Met. 16, 3-22

Sasaki Y., 1970a. Some basic formalisms in numerical variational analysis. Mon. Weath Rev. 98, 875-883.

Sasaki Y., 1970b. Numerical variational analysis formulated under the constraints as determined by longwave equations and low-pass filter. Mon. Weath. Rev. 98, 884-898.

Sherman C. A., 1978. A mass-consistent model for wind fields over complex terrains. J. Appl. Met. 17, 312-319.

Stohl A., Hittenberger M., Wotawa G., 1998. Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmos. Environ. 32, 4245- 4264.

Thomson D. J., 1984. Random walk modelling of diffusion in inhomogeneous turbulence. Q. J. R. Met. Sot. 110, 1107-1120.

Thomson D. J., 1986. A random walk model of dispersion in turbulent flows and its application to dispersion in a valley. Q. J. R. Met. Sot. 112, 511-530. 242-250

Walas S., 1988. Chemical Process Equipment: Selection and Design. Butterworths, Stonoham.

Zannetti P., Al-Madani N., 1983. Simulation of transformation, buoyancy and removal processes by Lagrangian particle methods. Proc. 14th Int. Technical Meeting on Air Pollution Modelling and its Application. Copenhagen, Denmark. September, 1983.

Zannetti P., 1986. Monte Carlo simulations of auto and cross correlated turbulence velocity fluctuations (MC- LAGPAR II MODEL). Env. Software. 1, 26-30.

Zannetti, P., 1990. Air pollution modeling : theories, computational methods, and available software. Van Nostrand Reinhold. New York. ISBN 0-442-30805-1.