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Abstract. Atmospheric temperature describes the specific heat content of the 
air at particular places and times. In this sense, the presented work proposes 
a multivariable system that takes data sets of different climatological 
variables, with the aim of regulating the temperature level. The diversity in 
climatological variables significantly affects precipitation, humidity, wind 
speed and temperature. Thus, a study has been carried out on these variables 
in terms of nonlinear dynamics. The aim of the work is to obtain a better 
understanding of the dynamics of local climatological variables. On the other 
hand, due to the fact that the time series analyzed are small, the analysis 
becomes complex, at the moment of joining all the variables in conjunction, 
and processing them by means of multivariate statistical prediction 
methodologies. The results have shown the mean values in the different 
variables with which a temperature is maintained between 20oC and 25oC, 
which shows possible work with multi-objective optimization of the 
obtained model. 
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Resumen. La temperatura atmosférica describe el grado de calor específico 
del aire en lugares y momentos específicos. En ese sentido, el trabajo 
presentado propone un sistema multivariable que toma conjuntos de datos de 
diferentes variables climatológicas, con el objetivo de regular el nivel de 
temperatura. La diversidad en las variables climatológicas afecta de forma 
importante las precipitaciones, la humedad, la velocidad del viento y la 
temperatura. Así, se ha realizado un estudio a partir de estas variables en 
términos de dinámica no lineal. El objetivo del trabajo se centra en obtener 
una mejor comprensión de la dinámica de las variables climatológicas 
locales. Por otra parte, debido a que las series temporales analizadas son 
pequeñas, el análisis se torna complejo, al momento de la unir todas las 
variables en conjunto, y de procesarlas por medio de metodologías de 
predicción estadística multivariable. Los resultados han mostrado los valores 
medios en las diferentes variables con los que se mantiene una temperatura 
entre 20oC y 25oC, lo que muestra posibles trabajos con la optimización 
multiobjetivo del modelo resultante. 

Palabras claves: Multiobjetivo, variables climatológicas, predicción 
estadística. 
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1. INTRODUCTION 

Climatological variation due to global warming has signified climatological changes at the regional level. Thus, 
in recent years, several studies have been conducted, estimating various possible global and regional impacts in 
different sectors and scenarios in which different types of emissions are studied (Arnell et al., 2019; Barange et al., 
2018; O’Neill et al., 2018; Sesana et al., 2021). In particular, local temperature and precipitation patterns are expected 
to deviate significantly from current levels in the event of significant future global warming. 

Different studies have been performed on the possible global and regional impacts due to different temperature 
levels. Thus, (Adwan et al., 2021; Arnell et al., 2016; Masson-Delmotte et al., 2018) relate the impact of temperature 
change by scaling patterns, expressed as climate models. Solazzo et al., have performed a diagnostic evaluation of 
different models, using classical statistical indicators to evaluate observations of climatological variables (2017). That 
is, with the aim of performing statistical analysis, and achieving a nearer calibration in the measurement relating the 
various climatological variables, various methods such as multiple linear regression (MLR), nonlinear programming 
(NLP) and canonical correlation analysis (CCA) have been applied (Busuioc et al., 2006; Tukimat et al., 2019). 

However, because the data from the different climatological variables maintain stochastic characteristics, the 
relationships are not easily distinguishable through simple linear statistics. Therefore, it is necessary to apply methods 
that allow showing the nonlinear relationships between the different variables simultaneously. Thus, in (Jin et al., 
2005), nonlinear relationships and temporal variation between temperature and precipitation are studied using a 
multivariate dynamic approach, focused on chaos theory. The multivariate approach can result from multiple types 
of variables, rather than multiple sites (Miao et al., 2023; Renard et al., 2022; Zscheischler et al., 2018), then, the 
dependence between variables is usually described by specific models of extremes (Favre et al., 2004), or through 
Bayesian time-varying hierarchical multivariate Bayesian models (Bracken et al., 2018). 

The climatological variables of Temperatures, CO2, Precipitation, Sea Level, Humidity and Wind Speed have 
been taken as the aim of study for this work. Figure 1 shows an example of the variation of the variables only in 
Ecuador. The problem focuses on the construction and estimation of models that perform multivariate identification, 
taking into account the prediction of the physical variables data. Hence, the aim of this work is to introduce an 
approximation that increases the accuracy of temperature prediction, based on the data collected through the 
aforementioned variables in the country of Ecuador. 

 

Figure 1. Variation of climatological variables in Ecuador. 
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The rest of the paper presents: in section 2 a brief description of the multivariate model and the data normalization 
applied to the problem. Section 3 contains a brief explanation of the experiments and results. Finally, section 4 
provides results and discussion, followed by quick conclusions and future work. 

2. METHODOLOGY 

 Due to the fact that the data of the different climatological variables are aleatory, it is necessary to make an 
approximation towards models expressed mathematically and in a unique shape. The definition of these models 
facilitates the study and allows the consideration of complex models with multiple predictors. Thus, assuming that 
the function in the environment is differentiable, then, let k ∈ ℕ  and f : ℝ → ℝ be a differentiable function k times 
at the point a ∈ ℝ. Therefore, there exists a function hk:ℝ→ℝ such that: 

	𝑓(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑥 − 𝑎)! +
𝑓′′(𝑎)
2!

(𝑥 − 𝑎)! +⋯+
𝑓"(𝑎)
𝑘!

(𝑥 − 𝑎)"

+ ℎ"(𝑥)(𝑥 − 𝑎)" 
(1) 

where, lim
x→a

hk (x). Which defines the Taylor polynomial, which approximates the data of the climatological variables 
towards mathematical models. 

2.1 MULTIVARIABLE MODEL 

Let us assume an input-output model of multivariable systems related as a vector 𝒙𝒊, which represents a discrete time 
series. Then, the state space vector 𝑿𝒊, is constructed as a 𝒎-dimensional random vector, which is expressed as: 

x(k+1)=Ax(k)+Bu(k) 
y(k)=Cx(k) 

(2) 

where, the current time is represented by k ∈ℤ, while, x(k)∈ℝ𝒏, u(k)∈ℝ𝒑 and y(k)∈ℝ𝒒 describe the state vector, the 
vector of inputs and the vector of outputs, where, n, p and q are the number of states, number of inputs and number 
of outputs of the system respectively. 
 The objective in each sampling period is to minimize a cost function 𝑱(𝒌) associated with the error terms between 
the output, y, and the reference, r, in addition to the control increment, Δu, such that: 

	𝐽(𝑘) =56|𝐲(𝑘 + 𝑗) − 𝐫(𝑘 + 𝑗)|6
#
!

$%

%&'

+ 5 6|Δ𝐮(𝑘 + 𝑗)|6
(
!

$&)'

%&*

 (3) 

where, Np represents the prediction horizon denoted by /|y(k+j)-r(k+j)|/
Q

2
, while, Nc represents the reference horizon 

expressed as /|Δu(k+j)|/
R

2
. Finally, Q ≥0 and R>0 define the necessary conditions for the minimization of the cost 

function. Hence, 𝑱(𝒌) is subject to the constraints: 

𝑥(0) = 𝑥* 

 xmin ≤	x(k+ j)	≤	xmax, j=1,…,NP 

 ymin ≤	y(k+ j)	≤	ymax, j=1,…,NP 

 umin ≤	u(k+ j)	≤	umax, j=1,…,NP 

(4) 
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In order to obtain the system outputs, first determine the states at the sampling instant (k), along the 
prediction horizon. Next, the future values of the states Δ𝐮(𝑘 + 𝑗 + 1), 𝑗 = 1, . . . , 𝑁', are obtained from the states 
estimated in the previous step, Δ𝐮(𝑘 + 𝑗), 𝑗 = 1, . . . , 𝑁', i.e., by means of a recurrent estimation up to Δ𝐮;𝑘 + 𝑁'<. 
Finally, the optimal control sequence, 𝐔 = 𝐮(0),… , 𝐮(𝑁( − 1), attempting that the estimated outputs NP reach the 
references r. 

3. DATA PROCESSING 

The purpose of downscaling in climatology and meteorology is to use spatio-temporal data to infer values at 
finer scales. Statistical downscaling approximates patterns to an existing data set taken from observations or physical 
models. 

Then, in order to perform a statistical analysis, a normal distribution transformation of the data has been carried 
out. However, the data of the different variables show an asymmetry and an annual periodicity. Therefore, the data of 
the climatological variables have been normalized and standardized (Olson & Kleiber, 2017), with the aim of 
transferring the deterministic components, i.e., stationarity and periodicity. 

Gaussian distributions can be derived by a simple transformation of the variables to a standard multivariate 
normal distribution. Then, assuming X as the random vector and the cumulative distribution functions fX1,…, fXm as 
the accumulated distribution functions. Hence, Uj=FXj;Xj<≈𝒰(0,1) possesses uniform distributions and each 
component of the random vector can be transformed into a random variable of standard normal distribution, such that: 

Zj =f𝒩(0,1)
	-1 >fXj?Xj@A≈𝒩(0,1) (4) 

 This approach shows a classical multivariate case, which assumes Z=(Z1,…,Zm)+, with j=1,…,m, indicating a 
multivariate standard normal distribution 𝒩(0,∑), with corresponding probability density function f𝒩(0,∑) and 
covariance matrix ∑. 

4. RESULTS AND DISCUSSION 

The presented method achieves predictive performance comparable to that of supervised statistical methods. 
Thus, in order to perform a numerical and graphical experimentation of the proposed model, it has been taken the data 
set from the observations made by (Goyal, 2023), where a total of 10,000 records of information from 6 climatological 
variables around the world have been accumulated. 

Specifically, the variables measured and analyzed for this research are, CO2, Precipitaction [mm], Sea Level 
[𝑚𝑚], Humidity [g/m3], and Wind Speed [km/h], collected between the years 2000 and 2020. Simulation results have 
been achieved (10 simulations per variable), from the definition of an average temperature between 20oC and 25oC. 
The analysis has been completed after the determination of 5 predictors, described by means of 3 canonical coefficients 
per predictor. 

 Therefore, considering the uncertainty in the analysis, the data modeling has been performed by means of a 
mixture of univariate normal probability distributions. Thus, the probability density functions of the climatological 
variables have been detailed in Table 1. Where, Pearson’s Correlation Coefficient 𝑅-, the coefficient of determination 
𝜌r2, the adjusted Coefficient R2 and the standard error 𝜀 are shown. 

Table 1. Estimated climatological relationship coefficients in Ecuador. 

 Correlation 
coefficient R2 

Determination 
coefficient 𝝆r2 R2 fit Standard error 𝜺 

Ecuador 0,336678 0,113352 0,002521 5,690707e-3 

Specifically, the variance in equation (5) and the residual variance in equation (6) are defined as follows 
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σy2=
1
N5?yi-yC@

2
N

i=1

 (5) 

σr2=ECM=
1
N5?yi-yD@

2
N

i=1

 (6) 

Therefore, the Coefficient of Determination is expressed as: 

ρr
2=1-

∑ ?yi-yD@
2N

i=1

∑ ?yi-yC@
2N

i=1

=1-
σr2

σy2
 (7) 

Consequently, Figure 2 describes a cumulative empirical distribution, which presents an evident heterogeneity, 
described as the frequency histogram of the approximate model of the climatological variables, where the blue line 
shows a Gaussian filter and the red line shows the approximation of the model. 

 
Figure 2. Cumulative Empirical Distribution 

 On the other hand, from the approximate model, Figure 3 shows the average variation of the climatological 
variables studied. It can be seen that the average values in each variable, with which a temperature is maintained 
between 20oC and 25oC, are CO2=375.14926, Precipitaction=70.33778[mm], Sea Level=1.67847[mm], 
Humidity=69.91908[g/m3], and Wind Speed=46.19514 [km/h]. 
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Figure 3. Average values of climatological variables in the approximate model. 

CONCLUSIONS 

The work presented here performs a prediction test that estimated the real climatological data in Ecuador between 
the years 2000 and 2020. Since the number of climatological variables data is limited, the nonlinear multivariate 
statistical analysis is complicated, so a starting point is required to perform an adequate normalization of data. 

The approach presented takes into account the correlations observed among the climatological variables, the 
model is constrained by a normal distribution, and finally, the data are the result of numerous simulations, which 
suggests that it can be improved. The results show that the nonlinear system is applicable in various nonlinear systems 
with a large number of variables, which have a certain level of interaction among them. 

As future work, it is proposed to perform a multi-objective analysis through a Pareto analysis, which could allow 
the development of a new approximate climatological prediction model. As well as the comparison of prediction 
performance in front of dynamic Artificial Neural Network (ANN) structures and recurrent neural networks. 
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